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On Geocasting over Urban Bus-Based Networks
by Mining Trajectories

Fusang Zhang, Beihong Jin, Member, IEEE, Zhaoyang Wang, Hai Liu, Jiafeng Hu, and Lifeng Zhang

Abstract—Bus networks in cities have distinctive features such
as wide coverage and fixed bus routes so that they show the
potential of forming the communication backbone in vehicular
ad hoc networks (VANETs). This paper focuses on the geocast
in bus-based VANETs and presents a geocast routing mechanism
named Vela. Specifically, Vela analyzes and mines historical bus
trajectories and characterizes spatial–temporal patterns (i.e., bus
travel-time patterns and bus spatial encounter patterns) in a
moderate granularity of road segments, which makes the mined
patterns both accurate and steady. Furthermore, Vela exploits
these acquired patterns to build a probabilistic spatial–temporal
graph model and provides the available routing paths with the
best possible quality-of-service levels for data delivery requests.
Moreover, Vela also employs a two-hop aware strategy that uti-
lizes the real-time spatial–temporal relationships between buses
to increase the chances of forwarding the data. The results of the
experiments on the real and synthetic trajectories show that Vela
performs much better in terms of delivery ratio and delay and has
stronger scalability than the other solutions.

Index Terms—Vehicular ad hoc networks, bus-based routing,
trajectory mining, time series analysis.

I. INTRODUCTION

A Vehicular Ad hoc Network (VANET) is a kind of
mobile and self-organizing wireless communication net-

work. Combined with the other technologies (such as sensor
technologies, positioning technologies), a VANET has been
envisioned to be an underpinning of many valuable applica-
tions, such as emergency message delivery [1], geographic
advertising [2], and various location-based services [3] for
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drivers and passengers. Geocast [4], delivering messages to
specific geographic locations, is an essential communication
paradigm to help to achieve these applications in a VANET.
Compared with 3G and Wi-Fi networks, multi-hop vehicular
ad hoc communications through Dedicated Short-Range Com-
munications (DSRCs) have a cheap deployment cost and a
relatively high bandwidth capacity for free [5]. Moreover, some
real-time messages can be detected and disseminated efficiently
via VANETs. These advantages enable VANETs to be the
promising message exchange platforms in modern cities and
play significant roles in different application domains.

As one of urban public transport systems, the bus network
covers almost entire city, where the buses move along the
fixed routes on the relatively regular schedules [6]. Therefore,
the buses equipped with the wireless communication units are
suitable for constituting a self-organizing network to deliver
data. However, achieving the fast and reliable geocast in a
bus-based ad hoc network is still a challenge due to the fol-
lowing reasons. First, because of the high speeds of vehicles, a
VANET suffers from rapid topology changing, communication
intermittency and network partitions. Second, the urban traffic
environments varied with the time of a day worsen the message
delivery quality, which may give rise to the loss of data delivery
opportunity. Third, how to mine the models of bus travel time
and patterns of the bus encounters and effectively apply to the
data routing mechanism is still a problem that has not been
solved perfectly. Up to now, some research work focuses on
geocast over VANETs. Unfortunately, any dedicated routing
mechanism which can distinguish between time-varying de-
livery conditions by mining real bus trajectory data has not
been seen.

We focus on the appealing applications which need dis-
seminate location-based service (LBS) messages (such as ge-
ographic advertisements, gas prices, traffic conditions, states
of tourist points of interest, and so on) to a geographic region
such as a point of interest (POI, referring to a rectangular area
covering at least one road segment in this paper). Fig. 1 shows
the scenario where an LBS message is disseminated to a
geographic region (i.e., a POI) via a bus-based network. The
whole message dissemination process can be divided into
three phases. First, a mobile vehicle Veh1 initiates an LBS
dissemination request and posts the message to a nearby bus
of route A. Second, the bus of route A carries the message until
encountering a bus of route B going to the POI. Thus, message
delivery can be achieved by the coordination between the buses
of different bus routes. Finally, the bus of route B broadcasts
the LBS message within the POI. As a result, all vehicles within
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Fig. 1. Example of application scenarios.

the POI can receive the message. Some existing approaches [7],
[8] have designed the protocols for the last phase to reliably
broadcast messages within the POI. Therefore, we focus on
the second phase of the above scenario, that is, delivering a
message from a source node to the destination road segment
with the goal of making the delay as low as possible and the
reliability as high as possible. This routing mechanism not only
is a key to realizing Vehicle to Vehicle (V2V) communications
but also can be applied to Infrastructure to Vehicle (I2V)
or Vehicle to Infrastructure (V2I) communications. Here, in
consideration of the deployment cost of a large number of Road
Side Units (RSUs), any RSU deployment, including deploying
the RSUs only at bus-stops or intersections, is not assumed.

In this paper, we propose a novel geocast routing mechanism
named Vela, which elegantly mines and utilizes the spatial-
temporal patterns of buses for fast routing. We highlight our
main contributions of this paper as follows:

• By observing the topology of a real-world bus network,
we discover some inherent characteristics of the bus tra-
jectories. Further, to reveal the spatial-temporal patterns
of bus trajectories, we build the Auto Regressive and
Moving Average (ARMA) models for travel time patterns
and find the fitting polynomials for spatial encounter
patterns, which enable us to make accurate predictions for
travel times and encounters of buses.

• For the first time, we characterize the spatial-temporal
patterns of buses in a moderate granularity of road seg-
ments. The resulting patterns not only overcome the short-
coming of low accuracy of the coarse-grained (i.e., bus
line level) patterns, but also avoid the low stability of the
fine-grained (i.e., bus level) patterns.

• Upon these, we propose a novel geocast routing mecha-
nism for bus-based ad hoc networks, which builds a prob-
abilistic spatial-temporal graph model for data delivery,
chooses the path with the highest reliability from the top-k
minimum delay paths as the message delivery path, and
provides an optimized two-hop aware strategy. Thus, the
novel mechanism both exploits the spatial-temporal fea-

tures implied in the historical trajectories and utilizes the
real-time spatial relations between buses on the roads.

• We conduct the experiments on real-world and synthetic
trajectories, respectively. Compared to existing routing
mechanisms over bus-based networks, the experimental
results show that our routing mechanism has better per-
formance and higher scalability.

The remainder of this paper is organized as follows.
Section II contains a review of the related work. Section III
gives some analyses of real-world bus trajectories. In
Section IV, we describe a probabilistic spatial-temporal model
for a bus-based network. Section V reveals the details about
the proposed geocast routing mechanism which is based on
the probabilistic spatial-temporal model; and in Section VI, we
evaluate the performance of Vela and analyze the simulation
results. Finally, we conclude our paper in Section VII.

II. RELATED WORK

A. Message Delivery in Vehicular Networks

The basic strategy to deliver messages over a VANET is
the carry and forward, i.e., the vehicles carry the messages
until encountering other vehicles to which they can forward
the messages. To select an appropriate relay vehicle, vari-
ous real-time and historical information, including geograph-
ical locations of vehicles, historical traffic statistics, vehicle
trajectories, and inter-vehicle encounter patterns, is exploited
[5], [9]–[13].

As for geocast over VANETs, the traditional geocast schemes
for MANETs (such as GeoTORA [4] and GeoGRID [14])
are not suitable for VANETs because they usually require
to frequently update their knowledge of the network, which
leads to an unaffordable burden for a VANET. Some recent
work focuses on geocast over VANETs. GeoMob [15] uses the
k-means clustering on the GPS reports of vehicles to generate
the regions, each of which contains different traffic volumes.
On this basis, a message is first forwarded to the region where
the destination locates, and then forwarded to the destination
by exploiting the mobility patterns of individual vehicles within
the region. We note that the message delivery between regions
mainly depends on the taxies or buses which move across
the regions frequently. Therefore, GeoMob may miss many
cooperative delivery opportunities and lead to a long delay.
Besides, GeoMob has no scheme of adjusting the regions with
the dynamic change of traffic flows in a day, but in general
such a scheme is supposed to help improve the effectiveness
of routing. [16] views the trajectories provided by the on-board
navigation systems as the vehicular future trajectories. Based
on the future trajectory of the vehicle itself and the vehicles
to be encountered, [16] calculates the coverage capability of
the vehicle over the target region of a message to be delivered,
and then makes the decision on message forwarding in terms
of the coverage capability. However, the above approach is not
applicable to a bus-based VANET, because the travel times of
buses do not follow the gamma distribution (see Section III-C)
which is the premise of the approach in [16].
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B. Routing in Bus-Based Networks

We classify the existing routing mechanisms for the bus-
based networks into two categories by the granularity at which
the underlying bus mobility pattern is explored.

The first category is to explore mobility patterns of individual
buses (bus level) to support routing [17], [18]. [17] deploys
30 buses and builds a bus-based network called UMassDiesel-
Net in the UMass Amherst campus. It utilizes the encounter
probabilities of individual vehicles to estimate the costs of
message delivery for a routing selection. [18] investigates the
vehicles with repetitive motions and decides the routing paths
through the expected minimum delay of messages. [18] also
conducts experiments on UMassDieselNet traces. However, the
approach in [18] is not suitable for urban bus systems, because
while compared with the urban bus routes, the campus bus line
usually has few bus stops and a reliable schedule. In brief, in
the realistic bus networks, there is no evident regularity for
individual buses so that the application scenarios which can
apply the first category of methods are limited.

The second category is to investigate the mobility patterns of
bus routes (bus line level) to facilitate the routing. BLER [19]
utilizes the patterns at the bus line level for routing over bus-
based networks for the first time. The routing selection is based
on maximizing contact lengths between different bus routes.
When the message reaches the destination bus line, a zigzag
process is triggered to route it to the destination bus, that is, a
bus transmits the message only to another bus running on the
same line. R2R [20] analyses the bus pair encounter frequency
and finds that around 44% bus pairs encounter only once over
five weekdays. R2R [20] utilizes the same method as BLER but
modifies the route selection metric into the encounter frequency
of bus routes to achieve better performance than BLER behaves.

Besides, [21] takes advantage of the feature of bus stops, i.e.,
the buses from different bus routes may stop at the same bus
stops. Therefore, [21] deploys wireless communication units
at the bus stops apart from buses, and then provides bus-
stop communications to relay the data from one bus line to
another. However, under such a mechanism, the encountered
buses cannot exchange information directly.

Different from the fine-grained (i.e., bus level) approaches
[17], [18] and coarse-grained (i.e., bus line level) approaches
[19], [20], we propose Vela which elegantly captures spatial-
temporal patterns of bus-based networks at an intermediate
granularity and obtains the better performance and scalability
than the existing approaches.

III. BUS TRAJECTORY ANALYSES

A. Collecting Bus Trajectory Data

First of all, to obtain a macroscopic picture, we project onto
the map the 146 bus routes operated outside of the second
ring road of Beijing, China in March 2013. Fig. 2 shows
the coverage status of the road network resulting from these
bus routes. It shows that a real-world bus network indeed
can be a VANET communication backbone. However, the bus
transportation system is usually affected by traffic flows and
emergency accidents. From a microscopic point of view, the

Fig. 2. Bus routes in the road map of Beijing.

TABLE I
GPS REPORT OF THE BUS

operations of a bus system often tend to deviate from the
expectations of bus scheduling. To exploit the bus mobility and
encounter patterns, we analyze the real bus trajectory data so as
to discover the spatial-temporal patterns.

We choose three typical bus routes: bus route No. 939,
No. 944 and No. 983 which have an average of 20, 60, and
42 buses per day respectively. All of the three routes go through
the trunk road from Beichen Bridge to Anhui Bridge with
the road length of 1920 meters, which is hereinafter referred
to as a sampling road segment. Each day from 6:00 A.M.
to 10:00 P.M., each bus sends back a GPS report every
20 seconds. Table I shows an example of GPS reports. The
specific information contained in such a report includes:
timestamp, bus ID, bus line number, the longitude and latitude
of current location, moving speed, azimuth angle, up/down line
mark, etc.

Due to the interference and loss of wireless signals, we first
preprocess the collected bus GPS data, including amending
the drifted GPS data, inserting the lost GPS data. Second, we
extract the trajectory data of buses of a specified bus route
on the sampling road segment according to the bus ID and
up/down line mark. Finally, we explore the spatial-temporal
characteristics of bus trajectories by statistics analysis.

B. Topology Analysis

As a matter of fact, message delivery is based on the con-
nectivity of buses. In urban bus-based networks, we should first
figure out some basic problems. For example, are the bus-based
networks well connected or highly partitioned? Can buses form
connected cliques and which size can the cliques of multi-hop
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Fig. 3. The topology snapshots with R = 250 m.

Fig. 4. The cumulative distribution functions of C(t).

connected buses attain? How does the connected clique change
as the communication range of buses increases? How do the
connectivity features vary in time? The answers to these ques-
tions not only directly show the topology features of the bus
network but also drive us to improve the design of geocast rout-
ing protocol. Therefore, we capture the real-world topologies
from the bus trajectory data of Beijing and analyze them from
the following three aspects.

1) The Topology Snapshots Over Time: The level of connec-
tivity of the buses-based network is characterized through the
connected clique, denoted as C(t), that is a cluster of buses
which can reach each other via multi-hop communication at
time t. The clique size is the number of buses in the clique.
The number of connected clique reflects the level of network
fragmentation.

As shown in Fig. 3, on the topology snapshots at 6 different
time points (from 7:00 to 12:00) which contain 1781, 1942,
2181, 1978, 1804, and 1591 buses respectively, we plot the
connected cliques. We set communication range R to 250 m, as
this is the value usually used by the existing work [22], [23].
The black circles in Fig. 3 represent the connected cliques,
which show that the bus-based network is highly partitioned

into thousands of separate individuals. Hence, the routing in
bus-based network should base on the carry-and-forward strat-
egy. During the peak hour from 8:00 to 9:00, the number
of buses increases and tends to form connected cliques. The
cumulative distribution functions (CDFs) of the clique size are
depicted in Fig. 4. It shows that the network is largely made of
small cliques and above 65% of vehicles is isolated. The cliques
whose sizes are equal to and greater than 2 account for 32% of
all the cliques at 8:00 and 30% at 11:00, respectively. However,
the distributions of cliques are different at the different time
points. Inferring from the above topology observations, we can
say both the bus travel time on the same road and the connec-
tivity are time-varied. Such temporal features are important and
should be exploited where the bus travel time is employed to
decide the routing.

2) The Connected Cliques Affected by Different R: We
now observe how different communication ranges impact the
connected cliques of a topology. We find from Fig. 5, when
R is set to 500 m, the connected cliques are formed easier
and the sizes of cliques are larger than the ones while R
is 250 m. The ratios of cliques (size > 2) are 42% at 8:00
and 43% at 11:00, respectively. Therefore, the communication
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Fig. 5. The topology snapshots with R = 500 m.

range has a nonnegligible impact on connectivity, furthermore
it will impact on the performance of the routing schemes. In
Section VI, the experiments are conducted to give us a detailed
quantitative analysis of routing performance in terms of the
communication range.

3) The Distance Distribution Between Buses: The distance
distributions for all buses and the buses of same lines are pro-
vided by Fig. 6. The distance distribution implies the condition
of network partition and indicates that the traditional routing
schemes [24], [25] are inefficient. In Fig. 6(b), we note there
are 14.1% of buses that can direct a deliver message to the front
bus of the same line if R is set to 250 m. Meanwhile, there are
8.7% of buses that can deliver messages to the front bus of the
same line by two hops via another bus. This characteristic is
utilized to enhance the efficiency for routing in Section V.

C. Observing Spatial-Temporal Patterns

In this subsection, we focus on exploring two kinds of
patterns from bus trajectories, i.e., the travel time patterns
and the spatial encounter patterns. This is because in a bus-
based ad hoc network, buses follow relatively stable schedules,
the uncertainties of their mobilities are greatly decreased, and
mobility patterns of the buses have the potential to play a
significant role in a geocast routing. Especially, the routing
performance can be improved greatly with the help of choosing
an appropriate mining granularity and a full utilization of the
spatial-temporal patterns between the buses.

1) Travel Time Patterns: The travel times of buses on a
road segment, which may vary in one day with varied traffic
conditions, reflect the rough transmitting times of messages in
the carry-and-forward paradigm.

Fig. 7 shows the average travel times of buses on the sam-
pling road segment from Mar. 4, 2013 (Monday) to Mar. 10,
2013 (Sunday). In Fig. 7, the travel times on weekdays demon-
strate obvious fluctuation in different time periods of a day. In
particular, the bus travel times from 7:00 A.M. to 9:00 A.M.
are two times as long as those of the other time periods.
Meanwhile, the travel times around 6:00 P.M. increase slightly.
However, although the travel times vary during a day, the
changing trend of travel times on the weekdays follows a
similar pattern. By contrast, the travel times at the weekend
are relatively stable. Especially, the standard deviation is only
11.7 seconds.

Learned from the previous work [26], [27], the vehicular
travel times of a road segment are supposed to follow a gamma

distribution or a log-normal distribution. In order to observe
whether the bus travel times follow these distributions, we
conduct an empirical study with the real trajectories of buses.
From the trajectories of 7 days from Mar. 4, 2013 to Mar. 10,
2013, we collect 1565 time values of different buses travelling
on the sample road segment and plot the histogram in Fig. 8.
We use the gamma distribution to fit the travel time values and
obtain the parameters via the maximum likelihood estimation.
However, the Kolmogorov-Smirnov (K-S) test rejects the hy-
pothesis with a significant level of 95 percent. This indicates
the travel time values of the buses do not follow the gamma
distribution. We also examine whether the travel times fit a
log-normal distribution by a similar way. The result of the
K-S test shows that the travel times do not follow log-normal
distribution either. We attribute this unexpected result to the fact
that the driving manner of buses is obviously different from the
ordinary vehicles. As for a bus, it has to stop at specified bus
stops, stays for a short time and continues to drive. Therefore,
we have to adopt another method to capture the pattern of travel
times in different time periods (see Section IV-B).

2) Spatial Encounter Patterns: We make an assumption that
two buses could have a chance to exchange a message (called
an encounter) if the distance between them is within a given
communication range. Next, we give the formal definition of
the probability of the encounter between two bus routes as
follows.

Definition 1 (Encounter Probability): The encounter proba-
bility between bus route A and bus route B on a road segment
r, denoted as P (Ar, Br), is defined as the ratio of the encounter
frequency of bus route A and B to the travel frequency of bus
route A within a certain period of time, namely:

P (Ar, Br) =

∑d
ts=s fts(Ar , Br)∑d

ts=s fts(Ar)
(1)

where ts ∈ [s, d] is a time slice, and for a specific time slice ts,
the indicator function fts is defined as

fts(Ar, Br) =

{
1 if a bus ofA contacts a bus ofB on r

0 otherwise

fts(Ar) =

{
1 if a bus ofA appears on r

0 otherwise.

As indicated from the definition, the binary relation P (Ar,
Br) is non-commutative (i.e., P (Ar , Br) �= P (Br, Ar)), and
P (Ar, Br) reflects the success probability that a bus of route A
forwards a message to a bus of route B.

We calculate the encounter probability of the bus route No.
944 and bus route No. 939 on the sampling road segment. The
time slice ts is set to 20 seconds, which is the same as the
GPS reporting interval. Fig. 9 shows the encounter probabilities
of two bus routes on the weekdays of four consecutive weeks
(i.e., 4th–8th, 11th–15th, 18th–22th, and 25th–29th March,
2013). We try to examine whether the encounter probabilities
during four weeks show periodic variations. So we convert the
encounter probabilities into the instantaneous frequencies by
the Fourier transformation. The resultant power spectrum is
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Fig. 6. The cumulative distribution functions of distance. (a) All buses. (b) buses of same lines.

Fig. 7. Bus travel times on the sampling road segment.

Fig. 8. Distribution of bus travel times.

shown in Fig. 10. The spikes can be seen from the graph of the
power spectrum, which indicates that the encounter probability
serials do be periodic.

From the above analyses, we reckon that the patterns of the
travel times and the patterns of spatial encounters existing in
the trajectories, but these patterns differ from those ones of
ordinary vehicles. Driven by this viewpoint, we manage to build
the models of bus travel times and explore the spatial-temporal
patterns of the bus encounters, and then apply them to the
routing mechanism.

IV. PROBABILISTIC SPATIAL-TEMPORAL MODELS

A. Overview

We next give the definition of a probabilistic spatial-temporal
graph which acts as an abstract layer over a bus-based network
for message delivery.

Definition 2 (Probabilistic Spatial-Temporal Graph): A
probabilistic spatial-temporal graph is constructed based on
the bus trajectories over a set ω of bus routes, denoted as
G =< V,E >, including a vertex set V and a directed edge
set E. Specifically, a vertex Ari in V denotes the bus route A
which passes through the road segment ri, and a directed edge
e ∈ E from Ari to Ari+1

(TYPE I) indicates that a bus of route
A can drive from the road segment ri to the adjacent segment
ri+1. However, a directed edge e ∈ E fromAri toBri (A �= B)
(TYPE II) indicates that the road segment ri is a common road
segment of bus route A and B and the buses of route A and B
may encounter and exchange messages on the road segment ri.

As introduced in Definition 1, P (Ari , Bri) is the probability
that the buses of bus route A and B encounter on road segment
ri. The message forwarding opportunities depend on the en-
counter probability P . The probability of transition from vertex
Ari to Ari+1

is a tautology proposition, and then we have the
addition of Definition 1:

P
(
Ari , Ari+1

)
= 1.

Fig. 11 shows an illustration of probabilistic spatial temporal
graph, large circles represent bus routes and the TYPE I edges
connect the vertexes within the same bus route. TYPE II edge
bridged two large circles is the transit between bus route A
and B.

Definition 3 (Weight Tuple): The weight of edge e is denoted
as a tuple < P,D >, consisting of the encounter probability
(P ) and delay (D). The encounter probability P has been
discussed in Definition 1. The delay refers to the transmission
latency between vertices. There are two types of latencies,
corresponding to the two types of edges. For the edge e of
TYPE I, that is, the message is carried by a bus from road
segment ri to ri+1, the delay D(Ari , Ari+1

) is the average
travel time of all the buses on road segment ri in the specified
time period. It will be estimated by mining the correlation
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Fig. 9. Encounter probabilities of two bus routes.

Fig. 10. Power spectrum of encounter probabilities.

of historical bus trajectories (See Section IV-B). For the edge
e of TYPE II, which means that the message is transmitted
between two buses, D(Ari , Bri) is set to 0. It is because the
transmission time is short enough compared to the carrying
time and therefore it could be ignored.

As an example to demonstrate the construction of a prob-
abilistic spatial-temporal graph, we give a Manhattan road
network consisting of 9 intersections and 12 road segments in
Fig. 12. In detail, three bus routes (i.e., A, B and C) cover
the road network. The route of bus route A is 1-4-9-11; the
route of bus route B is 2-4-9-12; the route of bus route C is
1-2-5-10-11-12-8-3-1. The corresponding probabilistic spatial-
temporal graph is shown in Fig. 13. Three large circles represent
bus route A, B and C, respectively. Note that the first element
of the weight tuple of a TYPE-I edge is equal to 1, such as
P (A4, A9) = 1 and the second element of the weight tuple of a
TYPE-II edge equals zero, such as D(A4, B4) = 0.

B. Predicting Travel Times of Buses

In order to predict the bus travel times, we treat the historical
bus travel times as the time series data, and adopt the linear
time series analysis method [28]. The motivation behind it is

Fig. 11. Illustration of probabilistic spatial temporal graph.

Fig. 12. Bus routes.

Fig. 13. Spatial-temporal graph.

that the amount of historical bus data is not large and the time
series techniques can be immediately applied to establish fairly
accurate mathematical models in the case of limited sample
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data. On the other hand, from the observation of real-world bus
trajectories, we find that the bus travel times on the same road
segment are different during the different time periods of a day.
To adapt to the time-varying feature in bus travel times, we deal
with the data on weekdays and at weekends, separately, and
then partition a day into several time periods and construct a
suitable ARMA model for the historical bus data of every time
period, so as to forecast the bus travel time from the specified
road segment to its adjacent road segment in the specified time
period.

More specifically, given a data set containing bus travel times
in the past x weekdays, we first evenly divide the entire bus
operating time (from 6:00 A.M. to 10:00 P.M.) into several fixed
time periods (TPs) with a length of D as an interval. Here D
is set to 20 minutes, therefore, the operating time of one day
is divided into 48 TPs, and the data in the data set are viewed
as 48 time series, which are denoted as {T TP

t , t ∈ [1, x]}. For
the sake of simplicity, if a specified time period y ∈ TP is
given, then the time series will be denoted as {Tt, t ∈ [1, x]}.
Then, for every Tt, we conduct the stationary test [29], model
identification and parameter estimation.

Considering that the distribution of travel times is unknown
and the runs test [30] is a non-parametric statistical test that
checks a randomness hypothesis without the need of any as-
sumption of data distribution, we analyze {Tt, t ∈ [1, x]} by the
runs test and find that all the 48 time series are stationary.

As for the model identification, it is essential to analyze the
autocorrelation of a time series. Therefore, we divide a time
series {Tt, t ∈ [1, x]} of travel times into two subseries with the
length of x− k, namely, {T1, . . . , Tx−k} and {Tk+1, . . . , Tx}.
Obviously, the two subseries have the same mean, denoted as
T . Then, the value of the autocorrelation function (ACF) can be
calculated as follows:

ρk =
γk
γ0

(2)

where

γk = E
[
(Tt − T )(Tt+k − T )

]
=

1
x− k

x−k∑
t=1

(Tt − T )(Tt+k − T )

k = 0, 1, . . . , x− 1.

ACF takes into account the influence of Tt+1, Tt+2, . . . ,
Tt+k−1(t ∈ [1, x− k]), and reflects the travel time correlation
between two days with k days apart, e.g., the correlation
between Tt and Tt+k. If ρk equals zero when k is greater than
q, then this indicates that the time series of travel times has a
q-step correlation. As thus, the q is the order of the Moving
Average (MA) model.

Next, we analyze the partial autocorrelation which indicates
the time correlation between Tt and Tt+k after ignoring the in-
fluence of Tt+1, Tt+2, . . . , Tt+k−1(t ∈ [1, x− k]). The partial
autocorrelation function (PACF), denoted as ϕk, can be ob-

tained by a Yule-Walker equation whose matrix representation
is defined as follows:⎡

⎢⎢⎢⎣
1 ρ1 · · · ρk−1

ρ1 1 · · · ρk−2

...
...

...
...

ρk−1 ρk−2 · · · 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
ϕk1

ϕk2

...
ϕkk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ρ1
ρ2
...
ρk

⎤
⎥⎥⎥⎦ . (3)

Substituting k with the positive number such as 1, 2, 3
. . . into the equation, the PACF (ϕk = ϕkk) can be solved
as follows: ϕ11 = ρ1, ϕ22 = (ρ2 − ρ1

2)/(1 − ρ1
2), ϕ33 =∣∣∣∣∣∣

1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 ρ1 ρ2
ρ2 1 ρ1
ρ1 ρ1 1

∣∣∣∣∣∣ , . . .. If the value of the

PACF ϕk is equal to zero when k is greater than p, that is, the
PACF value of the time series is zero at lag p, then the p is the
order of the Auto Regressive (AR) model.

Due to the randomness of the time series, the estimation of
ρk or ϕk may have possible deviation and fluctuate around
zero when k > p, or k > q. However, if ρk and ϕk are not
cut off but asymptotically converge to zero, then Tt is also
considered to follow the ARMA(p, q) model, where p and q can
be determined based on whether the values of the correlation
functions exceed the corresponding confidence bounds.

Consequently, the built forecast function is as follows:

Tt = ϕ1Tt−1 + ϕ2Tt−2 + · · ·+ ϕpTt−p + αt

− θ1αt−1 − · · · − θqαt−q (4)

where t > x, p and q are the orders of the Auto Regressive
model and Moving Average model, which are obtained by
the above model identification, αt�N(0, δ2)(i = 1, 2, . . .) is a
white noise series, and the coefficient ϕi(i = 1, 2, . . . , p) and
θj(j = 1, 2, . . . q) are estimated by the method of moments
estimation.

Finally, we conduct the Ljung-Box Q test [31] to ensure that
the sequence σt of residuals between the measured values and
the estimated values T̂t, i.e., σt = Tt − T̂t(t = 1, 2, . . . , x), is a
white noise sequence.

When the test is passed, we get the ARMA models for
Tt(t > x) which can predict the message delivery delay from
road segment ri to ri+1 during the specified period of the
t-th (t > x) day. The similar models can also be built for the
time series of travel times at weekends to obtain the prediction
values.

C. Validating the Prediction Method

In this subsection, we use real GPS trajectories of buses to
validate the effectiveness of prediction methods proposed in the
previous subsection.

We extract the trajectories on the sampling road segment
from Beichen Bridge to Anhui Bridge of four weeks from
Mar. 4 to Mar. 29, 2013 (6:00 A.M.–10:00 P.M.), and divide
these trajectories into two groups by weekdays and weekends.
And then, in the light of the method in the last subsection, we
analyze the time series data of weekdays of first three weeks to
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Fig. 14. ACF values.

Fig. 15. PACF values.

Fig. 16. Prediction results of travel times.

predict the travel times of the last weekday at the specified time
period (i.e., 8:00 A.M. to 8:20 A.M.).

First, we examine the values of ACF and PACF of bus travel
times. As shown in Fig. 14, the ACF at lag 2 is beyond the
boundaries of the confidence and then gradually dies out to
zero. The PACF shown in Fig. 15 has a large and significant
spike at lag 2 beyond the boundaries of the confidence. It
indicates that an ARMA(2,2) model is suitable for travel time
prediction.

Then, the parameters of the forecast function are determined
by moments estimation, and the travel time values (at the
specified time period in the fourth week) are predicted 5-step
ahead. As shown in Fig. 16, the residuals are few. Moreover,
the residuals are a white noise series which is validated by the
Ljung-Box Q test.

In addition, to understand the travel times at different time
periods of a day, we establish a forecast equation for each time
period (48 in total) and execute the one-step-ahead prediction.

So the travel times of next Monday and next Saturday are
obtained in Fig. 17(a) and (b), respectively.

Three error measurements (i.e., Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE)) [32] are employed to evaluate the
prediction accuracy. Table II depicts the prediction accuracies
of travel times at different time periods of a week, wherein
the MAPEs of weekdays and weekends are 10.42% and 8.02%,
respectively.

D. Estimating Encounter Probabilities

Through the statistics of encounter probabilities for bus
routes in Section III-C, we can see that the encounters of bus
routes on the same road segments show similar trends in four
successive weeks, so it is suitable to use the polynomial fitting
to reflect the trend of average encounter probabilities. Accord-
ing to the definition of encounter probability, we calculate the
historical average encounter probabilities Pt1 , Pt2 , . . . , Ptn at
different time periods (i.e., t1, t2, · · · , tn). In this way, the
encounter probability P at time t can be obtained by the
polynomial fitting as follows:

P (t) = μ0 + μ1t+ μ2t
2 + . . .+ μmtm (5)

where m represents the order of the polynomial, μi (i =
0, . . . ,m) is determined by the least square method.

We give an instance that demonstrates the fitting result of en-
counter probabilities. While the data in Section III-C are taken
as the input and m is set to 4, the resultant polynomial fitting
function is the equation (6) and the corresponding polynomial
curve is depicted in Fig. 18

p(t) = −0.00012t4 + 0.00713t3 − 0.15304t2

+ 1.36139t− 3.68266. (6)

V. ROUTING MECHANISM

In this section, we propose a geocast routing mechanism. As
a basic assumption in bus-based VANETs, all buses know their
1-hop neighbors by periodic heartbeat messages. In general, a
heartbeat message contains the sender’s bus information and its
neighbor list. Now each bus is required to hold the probabilistic
spatial-temporal graph. As thus, if a bus on a road segment
(denoted as Vsource) wants to deliver a message to a destination
road segment through a multi-hop communication, then Vsource

will execute the following steps.
1) Identifying the Destination: From the existing bus routes,

the bus routes that pass through the destination road segment
are identified and then extracted to form a node set, denoted as
goalSet.

2) Calculating the Top-k Shortest Delay Paths: For each
node in goalSet, denoted as Vdest, the shortest path from Vdest

to Vsource (in terms of delay) is calculated by using Dijkstra’s
algorithm over the spatial-temporal graph, and then the shortest
path from Vsource to Vdest is stored in a top-k path set. Next,
Vsource node is expanded one step further, that is, let the
nodes connected to Vsource be the starting points (denoted as
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Fig. 17. Prediction values of the travel times. (a) Monday. (b) Saturday.

TABLE II
PREDICTION ACCURACIES OF BUS TRAVEL TIMES

Fig. 18. Polynomial fitting of encounter probabilities.

Vnbr). The shortest paths from Vnbr to Vdest are searched. The
resulting paths plus the edge from Vsource to Vnbr are also put
into the top-k path set. The same expanding procedure for the
Vnbr is repeated until there are k paths in the top-k path set.

3) Calculating the Reliability of Message Delivery for Top-
k Paths: The reliability of path is computed by summing
the encounter probabilities of the constituent road segments
in spatial-temporal graph. Then, the path with the highest
reliability among top-k paths is selected as the message delivery
route.

4) Delivering a Message Along the Selected Path From
Vsource: As for a bus of route A, if the current routing task
derived from the predetermined routing path is to deliver the
message to a bus of route B on road segment r, then it will
directly send the message to a bus of route B while it arrives
at road segment r and finds that the bus of route B is in its
neighbor list.

5) Optimizing to Enable Two-Hop Aware Routing: For vari-
ous reasons, a bus of route A may not encounter a bus of route
B. Fig. 19 shows such a scenario. At this point, a two-hop aware
strategy is carried out. Taking the scenario in Fig. 19 as an
example, if the bus of route A searches its neighbor list and
finds that one of its neighbors (e.g., a bus of route C in Fig. 19)
has a neighbor of route B, then the message is transmitted
through a consecutive two-hop communication, i.e., first from

Fig. 19. Example of the two-hop aware strategy.

the source bus of A to a bus of C and then from the bus of C to
the destination bus of B.

6) Handling the Delivering While Failing to Encounter the
Bus: If the bus that is carrying the message fails to encounter a
bus of the predetermined route on the specified road segment,
then after a while the bus will detect that the message is not
delivered along the predetermined path. Next, the bus regards
itself as the source node and re-calculates the route to the
destination, so that the message can follow the new path to the
destination.

The two-hop aware strategy only depends on the heartbeat
messages, therefore it does not increase any other extra com-
munication overheads. Meanwhile, the buses of a route only
need to search their received heartbeat messages locally, so
the strategy can achieve two-hop neighbor perception at a
low computational cost. Moreover, the strategy can be used
for buses on the same bus routes. When the buses from the
same route perceive each other within two hops, the message
sender can leverage the specific neighbor to deliver the message
to another bus of the same route, thus reducing the time of
message carrying, so that the message can be delivered faster.
In short, the two-hop aware strategy enhances the feasibility of
message routing in practical applications.

Fig. 20 shows a whole picture of Vela.

VI. EVALUATION

A. Experimental Setup

In order to evaluate the performance and scalability of Vela,
we conduct extensive experiments to compare our routing
mechanism with the several alternatives, i.e., MaxProp [17],
BLER [19], R2R [20] and Vela-W.
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Fig. 20. Framework of vela.

MaxProp is a bus level approach. It utilizes encounter proba-
bilities of individual buses to estimate the cost of a virtual end-
to-end path to the destination and uses the cost as the metric for
routing decisions.

BLER is a bus line level approach. It builds a bus route
graph where a vertex denotes the bus route, an edge linking two
vertexes indicates at least one contact between two bus routes,
and the weight of an edge is the sum of contact lengths of road
segments. The routing path to the destination bus line is selected
by the criteria of maximizing contact lengths, and then a zigzag
process is triggered to route the message to the destination road
segment, that is, a bus transmits the message only to another
bus running on the same line.

R2R constructs a similar graph as BLER except that the
weight of an edge is revised to the frequency of encounter
between two bus routes.

Vela-W in fact is Vela without the two-hop aware strategy.
Comparing Vela against Vela-W can give us the evidence of the
effectiveness of the two-hop aware strategy in routing.

We adopt the delivery ratio and delivery delay as metrics
to evaluate the performance and scalability of Vela and the
other mechanisms. We use an open-source simulator NS-3
[33] for simulation. According to the specifications of IEEE
802.11p [34], the communication range is set to 250 meters,
transmission speed is set to 6 Mbps, message size is set to
128 kilobytes and heartbeat message interval is set to 1 second.
Based on the real map of Haidian district, Beijing (see Fig. 21),
two groups of experiments on the real-world bus trajectories
and the synthetic trajectories are conducted, respectively.

The first group of experiments is to observe the performance
of message delivery. It is based on a 4000 m × 5000 m area
of Zhongguancun district, Beijing, where the street layout
is derived from OpenStreetMap [35]. In this area, there are
35 buses belonging to bus route No. 944, bus route No. 939,
or bus route No. 881. We select the bus trajectories which
occur between 10:30 and 12:00 on March 20, 2013 as the
input of experiments. Before any experiment, real trajectories
(reported once every 20 seconds) are converted into the tcl file
format (where a GPS location per second is listed) using the
interpolation method. During the experiment, the buses enter
the selected area according to the real-time points of the bus
trajectories and move along the real trajectories. All of the buses
generate messages every one second and they randomly select
the road segments on bus routes as destinations. 3500 messages

Fig. 21. Real map of Haidian district, Beijing.

Fig. 22. 15 bus routes on the real map.

are sent in total. The experiment lasts 5400 seconds. During
the experiment, all the messages arriving and their latencies are
recorded.

The second group of experiments is to evaluate the scalability
of the routing mechanisms by observing how the delivery ratio
and delivery delay change with the increase of the number of
bus routes. The vehicle mobility simulation tool SUMO [36]
is used to generate the trajectories of 15 bus routes shown in
Fig. 22. Specifically, the Intelligent Driver Model (IDM) is
chosen for buses as their mobility model to reflect the features
of bus movements in urban scenarios. Bus stops are set on
road segments and bus dwell times at the bus stops are set
randomly which range from 30 seconds to 120 seconds. The
departing time intervals of buses at starting bus stops are set to
200 seconds. The messages are generated by the same way as
the first group of experiments.

B. Experimental Results and Analyses

As the preparation of the experiments, all the routing mech-
anisms need the existing bus trajectories to build their corre-
sponding graphs.

For the first group of experiments, we use 20-day trajectories
of 35 buses from 3 bus routes to build the graphs requested by
the different mechanisms.

When we use the above trajectories to calculate the proba-
bility of encounter between individual bus pairs for MaxProp,
we find that only a pair of buses (i.e., bus ID G62226 and
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Fig. 23. Message delivery ratio.

Fig. 24. Message delivery delay.

bus ID G64904) has encountered twice and no other bus pair
encounters each other during the 20 days. In other words, the
contact graph needed by MaxProp cannot be built. Therefore,
messages cannot be delivered to the destinations by MaxProp.
The above results of applying the MaxProp to a real-world
bus scenario demonstrate that using the encounter of individ-
ual buses to estimate the delivery likelihood for selecting the
routing path is not feasible in practical and further the MaxProp
is not appropriate to routing in the urban bus-based network.
Hereinafter, we no longer mention the MaxProp due to its
infeasibility.

In the first group of experiments, what we observe is the
changes of delivery ratios and latencies in different mechanisms
with the elapse of time (from 3600 seconds to 5400 seconds).
In Fig. 23, all the mechanisms have the increasing delivery
ratios as time goes on. It can be seen that the delivery ratio
of Vela outperforms the other mechanisms. For instance, the
delivery ratios of Vela and Vela-W reach 95.4% and 92.7% at
5400 seconds while the ratios for BLER and R2R are 73.5%
and 63.2%, respectively. It exhibits that the methods which
explore the spatial-temporal characteristics on road segments
have more accuracy than the bus line based methods. Fig. 24
shows the message delivery delay of all the four mechanisms.
The delay of Vela is always lower than that of the bus line level
approaches, which indicates that Vela achieves its intended goal
of latency reduction. In contrast, R2R and BLER have relatively
low delivery ratios and high delivery delay. The reasons may
come from the following three aspects. First, the contact length

Fig. 25. Message delivery ratio.

Fig. 26. Message delivery delay.

and frequency are the metrics to decide the routing path in
BLER and R2R, respectively. So they do not always bring
the decrease of the delivery time since the message would be
transmitted along some long-distance route. Second, a message
may need to be carried a long time before it is forwarded
to the buses that are required to satisfy some conditions (in
terms of contact length or frequency), that is, many delivery
opportunities may be missed since the bus encountered cannot
meet the condition of data forwarding. Third, in comparison
with Vela which delivers a message to the destination road
segment directly, BLER and R2R need a zigzag process after
the message reaches the destination bus line. This will no doubt
increase the message delivery delay.

We also see that the average delivery ratio of Vela is 4.2%
higher than that of Vela-W and the average delivery delay of
Vela decreases by 221 seconds in comparison with Vela-W. It is
because the two-hop aware strategy in Vela provides the chance
to deliver the messages to the buses reachable by two hops.

Next, we conduct experiments with different communica-
tion ranges of buses, in order to investigate how the perfor-
mance is changed under varying bus communication ranges.
Fig. 25 shows that the delivery ratios of all the mechanisms
are improved as the transmission range increases and with a
relatively quick rise around the range of 200 m. Here, the
delivery ratio of Vela is 95.8% with the range of 200 m, which is
just the ratio of Vela-W with the range of 350 m. This indicates
that two-hop aware strategy is effective to enhance the oppor-
tunity of encounter and expand the coverage of awareness. In
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Fig. 27. Message delivery ratio.

Fig. 28. Message delivery delay.

addition, as shown in Fig. 25, the delivery ratios tend to be
stabilized while the range is greater than 300 m. Fig. 26 shows
the trends of message latencies as the communication range
increases. While delivering a message, a large coverage range
implies that the message can be transmitted to the next hop
bus early, reducing the time to carry the message. The data in
Fig. 26 prove this statement. Although the delay has a slight
increase in the communication range of 200 m, the message
delay, upon the whole, decreases and tends to be stable while
the communication range is greater than 300 m.

For the second group of experiments, we use synthetic trajec-
tories to build the graphs requested by Vela/Vela-W, BLER and
R2R. The second group of experiments examines the effect of
the varying number of bus routes. Fig. 27 shows that when the
number of bus routes is increased from 5 to 15, the delivery ratio
of Vela has the similar growth from 82.1% to 94.7%, which
reflects the delivery ratio is well improved with the increase of
bus lines. Fig. 28 depicts the delivery delay under the different
number of bus routes. Apparently, Vela has the decreased delay
with the increase of bus routes. These results demonstrate the
scalability of Vela. On the other hand, as for R2R and BLER,
the impact of the growth of bus routes is not obvious when
the number of bus routes is low (from 5 to 8). But with the
growth of bus routes (from 8 to 15), their performance gradually
degrades. This is because R2R or BLER prefers to select a path
with a long contact length or a high contact frequency while
facing with multiple candidate paths. As a result, the chosen
path would be a time-consuming one, the arrived messages

may have long latencies, and some messages may not reach
at the destination within the experiment time. In brief, these
experimental results prove that R2R and BLER lack scalability.

VII. CONCLUSION

In this paper, we propose a geocast routing mechanism Vela
for bus-based VANETs. Considering the unique characteristics
of bus-based networks, Vela takes full advantage of the histor-
ical spatial-temporal relationships between buses for routing.
It mines the historical trajectories of a bus network so as to
capture the patterns of travel times on the road segments as well
as the patterns of bus encounters on the same road segments.
By combining the captured patterns with the bus network, Vela
constructs a probabilistic spatial-temporal graph model for the
bus-based VANET. As the result of the proper decision on
the patterns to be mined and the appropriate mining methods,
the graph model can accurately indicate the delivery delay
and reliability over the bus-based VANET. Therefore, as for a
message delivery request, the available routing path with best-
possible QoS levels can be calculated from the graph model.
On the other hand, Vela also utilizes the real-time spatial-
temporal relationships between buses for routing. Vela provides
a two-hop aware strategy to perceive the two-hop neighbors
and increase the chances of forwarding the data along the pre-
calculated path. We conduct the extensive experiments on the
real and synthetic trajectories. The experimental results show
that Vela has a high delivery ratio, a low latency and strong
scalability in comparison with the other mechanisms.
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