
Towards Scalable Processing for a Large-Scale Ride Sharing Service 

Beihong Jin, Jiafeng Hu 
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China 

Graduate University of Chinese Academy of Sciences, Beijing 100190, China 

Abstract—Ride sharing is a promising way to realize a 
convenient, economic and low-carbon travel. After analyzing 
and refining the requirements of a ride sharing service, the 
paper models the trajectory matching therein and discusses the 
implementation of a large-scale ride sharing service with the 
aim of improving the efficiency and scalability. 

Keywords- Pub/Sub; trajectory matching; ride sharing 
service; scalable processing 

I. INTRODUCTION

Although protecting environments and conducting 
sustainable development are world-wide consensuses, the 
current actual states still remain not optimistic. In many large 
and medium-sized cities, the number of vehicles increases 
rapidly. For example, statistics released in February 2012 
show there are more than 5 million vehicles in Beijing. 
Meanwhile, traffic congestion becomes a common 
phenomenon in our daily life. The traffic congestion not only 
impacts on people’s normal work and life, but also causes a 
lot of economic losses. Moreover, vehicle exhaust pouring 
into the air will lead to the obvious decrease of air quality 
and also damage the health of the individuals. Currently, 
vehicle exhaust has become an important factor of city air 
pollution. Therefore, a comprehensive approach is needed to 
address the above situations with the goal of creating the 
environments suitable for human habitation and working. 
Some cities (such as Beijing) carry out the even-odd license 
plate policy, which limits the dates that a vehicle can move 
on the road so that the amount of vehicles can be decreased 
and congestion will be alleviated. Some projects introduce 
station-car systems, which permit a user to pick up a car at 
any station and then leave it at another station. Ride sharing 
lets the travelers with similar itineraries and time schedules 
to share the journeys so that more than one person travels in 
a car. In 2012, the policy of taxi sharing, a kind of ride 
sharing, comes out in Beijing. Undoubtedly, ride sharing is 
an effective measure to lessen the traffic jam and improve 
ambient air quality. Besides the societal and environmental 
benefits, ride sharing can reduce the costs of both drivers and 
passengers by sharing the trip costs (including fuel expense). 
So far, many cities have actively carried out the ride sharing.  

To support ride sharing, a ride sharing service needs to be 
developed. In terms of functionality, such a ride sharing 
service should receive the requests of passengers who have 
the desires for ride sharing and then automatically search for 
the drivers who are willing to share the vacant seats in their 
cars. Since the drivers and passengers can be decoupled in 
time, space, and control flow, the ride sharing service can be 
regarded as an application of Pub/Sub middleware, i.e., the 
car-sharing requests submitted by the passengers are 

subscriptions, the drivers’ car-sharing intentions are events, 
and a Pub/Sub middleware will perform the matching 
subscriptions with events and deliver the matching results to 
both passengers and drivers. In general, it provides the 
calculation of the trip-related costs and the detailed method 
of payment. In additional, a ride sharing service may provide 
the client software which can be deployed on mobile phones 
for user convenience, and make a connection with any 
reputation system or social network tool to ease the fear of 
potential security threats. However, we think the greatest 
challenge in a ride sharing service comes from the dynamics 
of loads. The car-sharing subscriptions and events are subject 
to change frequently and unpredictably. Facing the dynamics 
in a ride sharing service, the cloud infrastructure on cluster 
computers, featured as the elastic resource provision and a 
pay-as-you-go manner, is appropriate for hosting a ride 
sharing service. But in order to utilize the cloud 
infrastructure to the utmost, the designers are required to 
present a scalable matching solution for ride sharing.  

The paper introduces our ongoing research work aiming 
at the scalable processing for a large-scale ride sharing 
service. The rest of this paper is organized as follows. 
Section II elicits the requirements for a ride sharing service 
and models the trajectory matching problem, where the 
trajectory stands for a vehicle routing. Next, Section III 
discusses a potential solution for trajectory matching. Then, 
the related work is given in Section IV. Finally, the paper is 
concluded in the last section.  

II. MODELLING

2.1 Requirement Analyses  
In general, the ridesharing desires published by drivers 

include the following three types of information: (1) 
Fundamental factors: a license plate number of vehicle, 
driver’s gender, estimated departure and arrival time (both 
are in terms of a time interval), a travel trajectory 
(alternatively, a starting point, an ending point, and the 
points that need passing should be given, the last one is set to 
null by default), the number of vacant seats (one or more), 
the required gender of passengers. (2) Economic factors: the 
saving expenses in terms of a numerical value or a 
percentage. (3) Social factors: driver’s various preferences. 
For example, some drivers only accept people who come 
from the same community or colleagues as passengers; or 
some drivers only accept non-smokers.  

From the point of view of passengers, they have to 
declare their identities, gender, expected departure time, 
expected arrival time, an origin, and a destination. Similarly, 
they can declare their requirements in economic aspect and 
the social aspect.  

2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic 

and Trusted Computing

978-0-7695-4843-2/12 $26.00 © 2012 IEEE

DOI 10.1109/UIC-ATC.2012.152

940



The matching for ride sharing in a ride sharing service is 
to match the ridesharing desires of drivers with that of 
passengers.  

Although the ride sharing can obtain social benefits 
including reduction of traffic congestion and air pollution, it 
has to be easy, safe, flexible, efficient, and economical so 
that it can be widely adopted and becomes popular in 
practice. In particular, it is expected to achieve the following 
optimization goals: (1) maximize the success rate of 
matching for ride sharing, (2) minimize the travel time from 
a system-wide perspective or from individual driver-
passenger pairs, (3) minimize the vehicle-miles from a 
system-wide perspective or following the principle of Pareto 
optimum for a driver-passenger pair.  

We note that optimizing system-wide metrics does not 
mean that the metrics of a driver-passenger pair can also 
reach the optimal. On the other hand, in terms of system-
wide vehicle-miles, the ride sharing is feasible if total 
vehicle-miles of a ridesharing trip are less than the sum of 
vehicle-miles of individual trips of its participants. Some 
possible ridesharing situations maybe like this: A driver 
takes a detour to the passenger’s location and picks him up, 
or, a driver takes a detour to a passenger’s destination and 
then drives up to his own destination. Permitting the above 
situations can increase the success probability of ride sharing, 
but such situations may lead to detour, i.e., changing the 
driver’s original route. 

The following example is used to illustrate the 
differences among metrics. Fig. 1 shows a road network, 
where the numbers on the edges represent the distances 
between two nodes. We assume that two drivers (D1, D2) 
and two passengers (P1, P2) have their origins and 
destinations below. 

D1: E�B
D2: A�B
P1: C�B
P2: D�B

There are two ride sharing 
solutions. Solution 1 consists 
of two pairs: (D1, P1) pair 
whose routing is 
E�D�C�B, (D2, P2) pair 

with a routing of A�E�D�B. Solution 2 includes only  a 
pair, (D1, P2) pair with E�D�B. Solution 1 is superior to 
solution 2 in terms of the number of successful matching (a 
system-wide metric). But in solution 2, (D1, P2) pair is 
optimal in terms of vehicle-miles. At the same time, in order 
to let D1, D2, P1 and P2 arrive at their destinations, solution 
1 needs 34 vehicle-miles in total and solution 2 is 30 from a 
system-wide perspective.  

We think providing a solution for optimizing the metrics 
for driver-passenger pairs without changing the driver’s 
original routes is more important while giving first place to 
pursuing better user experience.  

We observe that the ride sharing desires can be expressed 
by a logical combination of predicates in a form of “type 
attribute operator value”. Meanwhile, all the factors except 
the driver’s trajectory can be described by the values of 
primitive types (such as integer, string). However, the 

diversity of trajectories enables it to have the maximal 
degree of discrimination. Therefore, we divide the matching 
of ride sharing into two parts: the matching of trajectories 
and matching of the other predicates, where the matching of 
trajectories is to decide whether the passenger’s origin and 
destination are on the planning route of a driver. Conducting 
the matching of trajectories as a first step can greatly reduce 
the scope of searching and relieve the burden of matching of 
the other predicates, so the efficient trajectory matching is 
the key in ride sharing.  

2.2 Modelling the trajectory matching  
If a driver only gives an origin and a destination rather 

than a trajectory in his ride sharing desire, then the trajectory 
from the origin and the destination can be generated from a 
digital navigation map. If the locations that need passing are 
given besides the origin and the destination, then the whole 
trajectory can be obtained by two steps: (1) generating the 
sub-trajectories by the digital navigation map, taking as its 
input the two locations passed through in turn; (2) 
concatenating the sub-trajectories to form the whole 
trajectory.  

The essence of the trajectory matching is to find the ones 
which pass the two designated points (i.e. original point and 
destination point, denoted by OPoint, DPoint) from a set of 
trajectories. Obviously, every trajectory can be divided into a 
set of connected segments. If OPoint is on one segment 
(denoted by SegA), DPoint is on another segment (denoted 
by SegB), and SegA and SegB belong to the same trajectory, 
then the matching succeeds. 

III. SOLUTIONS

3.1 A Basic Solution 
To deal with the trajectory matching, the road network 

needs to be partitioned into several disjoint regional subnets 
so that every road only belongs to a regional subnet. Since 
the network partition is known as NP-complete, there are 
two ways to partition a road network. One is based on 
network semantics. For example, a city government may 
divide the whole city into multiple districts as basic 
administrative units; thereby the roads in the city can be 
divided by the districts, and the roads in a district form a 
regional subnet. Another is to adopt existing heuristic 
algorithms. For example, we can adopt the network 
partitioning approach in [1], which clusters roads into 
partitions based on spatial proximity [2].  

Next, an R tree (called by segment R-tree) is built for 
regional subnets, where every leaf node stores a minimal 
rectangle which bounds a regional subnet, and the road 
segments in the regional subnet. As thus, a trajectory can be 
stored in the leaf nodes in the form of road segments, so long 
as a trajectory ID is assigned to the segments which belong 
to the same trajectory. On the other hand, OPoint or DPoint 
also can be stored in a leaf node whose MBR (minimum 
bounding rectangle) covers the location of OPoint or DPoint.  

For example, a part of road network in Fig. 2 (a) can be 
divided into four disjoint regions R1-R4 shown by dotted 
lines. If a segment R-tree is created for the road network, 

941



then MBRs in the leaf nodes of  the R tree will be four red 
solid rectangles in Fig. 2 (b).  

Figure 2. (a) a sample road network               (b) MBRs  
We note in many existing researches, building an index 

for spatial data is serving for mobile objects, i.e., it is used to 
support the queries like this: Given an ID of a moving object, 
its location or the other objects (and their locations) related 
with the object can be obtained by traversing the index. But 
unlike the above access method to trajectories, the trajectory 
matching in a ride sharing service is to find the trajectories 
on which a passenger’s location is, and then to find the 
owners of the trajectories. So, we still use the R-tree or its 
variants to organize the trajectories but need to develop a 
new algorithm for the trajectory matching.  

The new algorithm should include two parts: (1) it takes 
a trajectory as input. For every segment (denoted by SegX) 
which consists of the trajectory, it first locates the leaf node 
that SegX belongs to, and then matches SegX with the stored 
OPoints or DPoints at the leaf node. If the trajectory is found 
that it passes the stored OPoint and DPoint which are with 
same owners at the same time, then the trajectory matching 
succeeds, else the trajectory will be saved in several leaf 
nodes. (2) it takes OPoint and DPoint as input, and judges 
whether they are on some trajectory by traversing the R tree. 
If OPoint and DPoint are on the same trajectory, then the 
trajectory matching succeeds. Otherwise, it will save OPoint 
and DPoint on the proper leaf nodes by their locations. 

3.2 A Scalable Solution 
We assume that a driver’s request has a trajectory 

predicate which has a set of segments {SegX} as its value 
besides the other predicates, and a passenger’s request gives 
the values of OPoint and DPoint as well as the other 
predicate constraints.   

If a driver’s request permits to share multiple seats (e.g. 
m seats), then this request will be treated as m events, where 
each event only permits one seat to be shared.  

To obtain efficient and scalable matching, we design 
three kinds of servers: an access server X, several working 
servers Yi and a finalized server Z, and deploy all these 
servers in VMs in a cloud infrastructure (e.g. XenServer). 
Here, X maintains an R-tree to store all the segments in the 
network of roads, and in every leaf node, a Y is designated to 
deal with the requests within its administrative region, i.e., 
the MBR of the leaf node. At service startup, only one Y is 
deployed, so it is responsible for dealing with all the requests. 
As time goes by, the number of Y (denoted by n) is adjusted 
automatically by the method in next subsection. Further, Yi 
(1<=i<=n) in the leaf nodes is also changed, and the Yi may 
have one or multiple administrative regions. Yi stores the 
requests of passengers whose OPoints or DPoints are in 

administrative region(s) of Yi, in other words, Yi classifies 
the requests of passengers in terms of the segments, and then 
organizes each group of requests of passengers into a tree 
STree according to covering relations among the contents of 
requests of passengers. Moreover, Yi stores in a list named 
DList the unmatched drivers’ requests whose trajectories 
pass by the administrative region(s) of Yi. Finally, Z 
maintains a list named SemiMatchedList which consists of 
ReqDId, ReqD, the type of point (original point or 
destination point), ReqP, and ReqPId.  

Assuming that there are only one Y and four requests 
from passengers as follows,  

ReqP1:�Opoint=o1,�Dpoint=d1�//o1�is�on�Segh,�d1�is�on�Segg�

Start�time:�2012�7�7�9:00am�9:30am,�Arrival�time:�2012�7�7�10:00am�10:20am�

ReqP2:�Opoint=o2,�Dpoint=d2�//o2�is�on�Segh,�d2�is�on�Sege�

Start�time:�2012�7�7�9:05am�9:15am,�Arrival�time:�2012�7�7�10:20am�10:30am�

ReqP3:�Opoint=o3,�Dpoint=d3�//o3�is�on�Segh�,�d3�is�on�Segc�

Start�time:�2012�7�7�2:10pm�2:25pm,�Arrival�time:�2012�7�7�3:00pm�3:15pm�

ReqP4:�Opoint=o4,�Dpoint=d4�//o4�is�on�Segh�,�d4�is�on�Segc�

Start�time:�2012�7�7�9:10am�9:25am,�Arrival�time:�2012�7�7�10:00am�10:15am�

the above requests are organized as shown in Fig. 3. 

Figure 3. passenger requests on Y 
The whole procedure of processing a driver’s request is 

as follows:  
(1) While a driver’s request ReqD arrives at X, X assigns a 

unique identifier ReqDId to ReqD. Next, for every 
segment SegX in the ReqD, X finds in the R tree the leaf 
node (identified by LeafID) which stores SegX and then 
sends the ReqD, ReqDId, LeafID and SegX to the Yi 
whose administrative region covers SegX.  

(2) While Yi receives the above message from X, it 
searches the STree corresponding to SegX. If OPoint or 
DPoint (MatchedPoint hereinafter) in a stored request of 
passenger ReqP is on SegX and ReqD satisfy the other 
predicate constraints in ReqP, then it packages ReqP, 
ReqPID, ReqD, ReqDId and type of MatchedPoint 
(original point or destination point) into a message and 
sends it to Z, otherwise it will store the driver’s request 
in DList.  

(3) Upon receiving the message from Yi, Z searches 
SemiMatchedList. If it finds an entry whose ReqDId is 
the same as that of the message and the type of node is 
opposite to that of the message, which means that a 
successful ridesharing pair (ReqD, ReqP) is found, then 
it sends a successful matching message piggybacking 
ReqPId to Yi, and a notification to the passenger and the 
driver, else it saves the message into the 
SemiMatchedList and sends a non-matched message in 
passing ReqDId to Yi.  

942



(4) While Yi receives the successful matching message 
from Z, it will delete the stored information related with 
ReqPId. If Yi receives the non-matched message, it will 
store the unmatched driver’ request in DList.  

The whole procedure of processing a passenger’s request 
is as follows:  
(1) While a passenger’s request ReqP arrives at X, X 

assigns a unique identifier ReqPId to ReqP. Next, for 
OPoint and DPoint in the ReqP, X finds in the R tree the 
leaf node (identified by LeafID) whose MBR covers 
OPoint or DPoint, and then find the SegX on which 
OPoint or DPoint is. After that, it sends the ReqP, 
ReqPId, LeafID and SegX to the Yi whose 
administrative region covers SegX.  

(2) While Yi receives the above message from X, it 
searches the DList to find the ReqD whose segment 
covers SegX and other predicates can satisfy ReqP. If 
existed, then it packages ReqP, ReqPID, ReqD, ReqDId 
and type of MatchedPoint (original point or destination 
point) into a message and sends it to Z, otherwise it will 
store the passenger’s request in STree. 

(3) Upon receiving the message from Yi, Z searches 
SemiMatchedList. If it finds an entry whose ReqPId is 
the same as that of the message and the type of node is 
opposite to that of the message, which means that a 
successful ridesharing pair (ReqD, ReqP) is found, then 
it sends a successful matching message piggybacking 
ReqDId to Yi, and a notification to the passenger and 
the driver, else it saves the message into the 
SemiMatchedList and sends a non-matched message in 
passing ReqPId to Yi.  

(4) While Yi receives the successful matching message 
from Z, it will delete the stored information related with 
ReqDId in DList. If Yi receives the non-matched 
message, it will store the unmatched passenger’s request 
in some STree.  

3.3 Self-adjusting the number of Y 
Let |e| denote the number of requests concerning 

segment e, and EY denote the set of all segments which Y is 
charge of. We use |e| as the load of segment e, and 
|EY|=  as the load of Y.  

We record the loads of all Ys at X. When X finds Y is 
over-loaded, i.e., |EY|  > �max, then X decides to add a new 
Y (Ynew). In detail, X needs to split the leaf nodes Y 
manages into two sets setL1 and setL2 so that the difference 
between the total load of segments in L1and the total load of 
segments in setL2 is minimal. This can be turned into a 
classical set partitioning problem which can be solved by the 
method in [3]. The time complexity of the method in [3] is 
O(nlogn) in most cases, where n is the number of the 
elements in the set. After obtaining setL1 and setL2, X will 
update the information stored in leaf nodes of the segment R-
tree. We assume that Y will manage the leaf nodes in setL1 
and Ynew setL2. Then, Y will send to Ynew the passenger’s 
requests  whose LeafID belong to setL2 (in terms of STree). 
In addition, Y will divide DList into two parts Dlist-L1 and 
Dlist-L2 according to the set which the LeafID of an element 

of Dlist belongs to (i.e., setL1 or setL2), and sent Dlist-L2 to 
Ynew.   

On the other hand, when X finds that Y is low-loaded, 
i.e., |EY|  < �min, then X will search the server who can hold 
the Y’s load. X chooses the server whose load is minimal 
(except Y) (named Ymin), and transfers the load of Y to 
Ymin if the sum of load of Y and Ymin is less than �max. 
Finally, Y can be shut down.  

The following gives an example to show the effect of 
adjustment. We assume that four leaf nodes are managed by 
Y1 so the load on Y1 consists of four parts 
{(R1,30),(R2,16),(R3,73),(R4,56)}, after applying set 
partitioning algorithm, we can get two sets as follows:  

set1={(R1,30), (R3,56)};  
set2={(R2,16), (R4,73)};  
where ||set1|-|set2||=3 
As a result, as shown in 4(a), Y1 is assigned to deal with 

the requests concerning R1 and R3 which are shown as red 
dotted rectangles in Fig. 3(b) respectively, and Y2 is for 
requests concerning R2 and R4 (blue solid rectangles in Fig. 
4(b)).  

Figure 4(a). a segment R-tree at X    (b) the regions managed by Yi(i=1,2) 
Every Y periodically makes the unmatched requests 

persistent on a separate storage server, and records the 
updates about the requests happened between two 
persistence jobs. As thus, while Ynew is activated, the most 
of data Ynew needs can come from the cloud storage instead 
of the heavy-loaded Y.  

IV. RELATED WORK 

In recent years, multiple applications including 
Carticipate (http://www.carticipate.com/), Piggyback 
(http://www.piggybackmobile.com/?page_id=10), Zimride 
(http://www.zimride.com/), Avego (http://www.avego.com/), 
GoLoco (http://goloco.org/greetings/guest) and Wodache 
(http://wodache.com/) offer ride sharing service. But there 
are no reports related with the scalability of these 
applications.  

[4] is a report which is prepared for U.S. Department of 
Transportation. It not only surveys the state of the art of 
dynamic ridesharing projects in U.S. but also presents a 
formal model for ridesharing matching problem. [5] 
systematically outlines the optimization challenges that arise 
at the time of developing techniques to support ridesharing. 

Our target system is a kind of location based service 
whose users interact with each other in a Pub/Sub way; 
meanwhile it is expected to be built on the cloud 
infrastructure. Therefore, our research on a ride sharing 
service is related to index technology for spatial data from 
the field of database, distributed processing of trajectory data 

943



and Pub/Sub middleware from the field of distributed 
systems, and migrating existing systems to cloud 
infrastructure from cloud computing. 

Since the original R-tree was proposed for spatial data by 
Guttman [6], there have been many variants [7], such as 3D 
R-tree for spatiotemporal data, TB-tree (Trajectory Bundle 
tree) and SETI (Scalable and Efficient Trajectory Index) for 
trajectory data, FNR-tree (Fixed Network R-tree) for spatial 
data in a fixed spatial network. However, all of them are 
built on a single server. In regards to distributed processing 
of trajectory data, most of systems classified under moving 
objects databases [8], streaming processing systems [9], or 
location management systems [10] adopt the space 
partitioning approach, i.e., every server is designated to be 
responsible for a region in advance, and then it stores the 
segments which belong to the region, or execute the queries 
related to the region or updates the locations of objects in the 
region. To speed up the processing of trajectory data, a 
distributed index may be built, for example, [8] builds a 
distributed trajectory index similar to a skip list so as to 
accelerate the routing of a query to the server which stores 
the queried segments.  

Pub/Sub middleware provide a mechanism to filter and 
disseminate the events according to user’s requirements. 
Existing systems include SIENA [11] for wide-area network 
applications, PADRES [12] for workflow management and 
business process, OncePubSub [13] for RFID applications, 
APUS [14] for VANET applications. But in a ride sharing 
service, the response to ride sharing requests should be on 
very short notice or even en-route. Such requirement does 
not take into accounts in the existing Pub/Sub systems.  

Migrating existing systems to cloud infrastructure seems 
a sound solution to cater for load fluctuation. Many efforts 
have been done, including migrating n-tier applications [15], 
service-oriented systems [16] and Pub/Sub systems [17]. In 
general, while being migrated to the cloud infrastructure, a 
computation-intensive system can obtain the scalability by 
replicating its components. But a data-intensive system may 
spend a lot of time to transfer the data in memory and bear 
heavy burdens of network traffic while utilizing the elastic 
resources in the cloud. The situation will be more complex 
while involving the persistent data, since persistent data are 
required to replicate the updates. At the worst, if the 
applications put the constraints on the storage locations of 
data and data routing, it may lead to re-construct the system 
for the cloud. Similarly, a ridesharing system over the cloud 
also relates to server consolidation and migration. In regards 
to data transferring between servers, our way is to take 
advantage of the cloud storage so as to decrease the amount 
of data transferring and speed up the procedure of load 
balance. 

V. CONCLUSIONS

Ridesharing can be viewed as a kind of Pub/Sub 
application which suffers from load fluctuation but is 
required to respond quickly. We discuss its implementation 
method over the cloud in the paper. Next step is to 

implement and evaluate the ride sharing service 
comprehensively.  

ACKNOWLEDGMENT

This work was supported by the National Natural 
Science Foundation of China under Grant 60970027.  

REFERENCES

[1] N. Jing, Y.-W. Huang, E.A. Rundensteiner, Hierarchical Encoded 
Path Views for Path Query Processing: An Optimal Model and Its 
Performance Evaluation, IEEE Trans. Knowledge and Data Eng., vol. 
10, no. 3, pp. 409-432, 1998. 

[2] Y.-W. Huang, N. Jing, E.A. Rundensteiner, Effective Graph 
Clustering for Path Queries in Digital Map Databases,  Proc. Fifth 
Int’l Conf. Information and Knowledge Management, 1996. 

[3] N.karmarkar and R. M. Karp. The Differencing Method of Set 
Partitioning. Technical Report UDB/CSD 82/113, UC, Berkeley, 
1982. 

[4] Keivan Ghoseiri, Ali Haghani, Masoud Hamedi, Real-Time 
Rideshare Matching Problem, January 2011  

[5] Agatz, N., Erera, A., Savelsbergh, M., Wang, X., Optimization for 
Dynamic Ride-Sharing: A Review, European Journal of Operational 
Research, 2012, doi: http://dx.doi.org/10.1016/j.ejor.2012.05.028

[6] Guttman, A. R-trees: A dynamic index structure for spatial searching. 
In Proceedings of the 1984 ACM SIGMOD International 
Conferencee on Management of Data, Jun 1984, pp. 47-57. 

[7] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. 
Papadopoulos, Yannis Theodoridis, R-Trees: Theory and 
Applications, Springer-Verlag London Limited 2006  

[8] Ralph Lange, Frank Dürr, Kurt Rothermel, Scalable Processing of 
Trajectory-Based Queries in Space-Partitioned Moving Objects 
Databases, ACM GIS08, November 5-7, 2008, Irvine, CA, USA. 

[9] X. Xiong, H. G. Elmongui, X. Chai, W. G. Aref. PLACE*: A 
Distributed Spatio-temporal Data Stream Management System for 
Moving Objects. In Proc. of 8th MDM, May 2007. 

[10] J. Zhang, G. Zhang, L. Liu. Geogrid: A scalable location service 
network. In Proc. of 27th ICDCS, June 2007. 

[11] Carzaniga A, Rosenblum DS, Wolf AL. Design and evaluation of a 
wide-area event notification service. ACM Transaction on Computer 
Systems, 2001, 19(3) 

[12] Li GL, Jacobsen A. Composite Subscriptions in Content-based 
Publish/Subscribe Systems, the 6th ACM/IFIP/USENIX International 
Middleware Conference 2005. 

[13] Beihong Jin, Xinchao Zhao, Zhenyue Long, Fengliang Qi, Shuang Yu, 
Effective and Efficient Event Dissemination for RFID Applications, 
the Computer Journal, Volume 52, Issue 8, Nov. 2009. 

[14] Fusang Zhang, Beihong Jin, Wei Zhuo, Zhaoyang Wang, Lifeng 
Zhang, A Content-Based Publish/Subscribe System for Efficient 
Event Notification over Vehicular Ad hoc Networks, The 9th IEEE 
International Conference on Ubiquitous Intelligence and Computing, 
Fukuoka, Japan, 2012 

[15] Deepal Jayasinghe, Simon Malkowski, Qingyang Wang, Jack Li, 
Pengcheng Xiong, Calton Pu, Variations in Performance and 
Scalability when Migrating n-Tier Applications to Different Clouds, 
IEEE 4th International Conference on Cloud Computing, 2011 

[16] Muhammad Aufeef Chauhan, Muhammad Ali Babar, Migrating 
Service-Oriented System to Cloud Computing An Experience Report, 
IEEE 4th International Conference on Cloud Computing, 2011 

[17] Biao Zhang, Beihong Jin, Haibiao Chen, Ziyuan Qin, Empirical 
Evaluation of Content-based Pub/Sub Systems over Cloud 
Infrastructure, The 8th IEEE/IFIP International Conference on 
Embedded and Ubiquitous Computing, 2010, Hong Kong, China. 

944


