
The VLDB Journal (2017) 26:803–828
DOI 10.1007/s00778-017-0482-5

REGULAR PAPER

Effective and efficient attributed community search

Yixiang Fang1 · Reynold Cheng1 · Yankai Chen1 · Siqiang Luo1 · Jiafeng Hu1

Received: 25 March 2017 / Revised: 19 August 2017 / Accepted: 7 September 2017 / Published online: 21 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract Given a graph G and a vertex q ∈ G, the com-
munity search query returns a subgraph of G that contains
vertices related to q. Communities, which are prevalent in
attributed graphs such as social networks and knowledge
bases, can be used in emerging applications such as prod-
uct advertisement and setting up of social events. In this
paper, we investigate the attributed community query (or
ACQ), which returns an attributed community (AC) for an
attributed graph. The AC is a subgraph of G, which satis-
fies both structure cohesiveness (i.e., its vertices are tightly
connected) and keyword cohesiveness (i.e., its vertices share
common keywords). The AC enables a better understand-
ing of how and why a community is formed (e.g., members
of an AC have a common interest in music, because they
all have the same keyword “music”). An AC can be “per-
sonalized”; for example, an ACQ user may specify that an
AC returned should be related to some specific keywords
like “research” and “sports”. To enable efficient AC search,
we develop the CL-tree index structure and three algorithms
based on it.We further propose efficient algorithms for main-
taining the index on dynamic graphs. Moreover, we study
two problems that are related to the ACQ problem. We eval-

B Yixiang Fang
yxfang@cs.hku.hk

Reynold Cheng
ckcheng@cs.hku.hk

Yankai Chen
ykchen@cs.hku.hk

Siqiang Luo
sqluo@cs.hku.hk

Jiafeng Hu
jhu@cs.hku.hk

1 Department of Computer Science, The University of Hong
Kong, Pokfulam, Hong Kong

uate our solutions on six large graphs. Our results show that
ACQ is more effective and efficient than existing commu-
nity retrieval approaches. Moreover, an AC contains more
precise and personalized information than that of existing
community search and detection methods.

Keywords Community search · Attributed graphs · Graph
queries

1 Introduction

Due to the recent developments of gigantic social networks
(e.g., Flickr, Facebook, and Twitter), the topic of attributed
graphs has attracted attention from industry and research
communities [6,12,17,23,24,42,45]. An attributed graph is
essentially a graph associated with text strings or keywords.
Figure 1 illustrates an attributed graph, where each vertex
represents a social network user, and its keywords describe
the interest of that user.

In this paper, we examine the attributed community query
(or ACQ). Given an attributed graph G, a vertex q ∈ G, and
a positive integer k, ACQ returns one or more subgraphs of
G known as attributed communities (or ACs) that vertices in
each one of them should have degrees of k or more. An AC
is a kind of community, which consists of vertices that are
closely related [4,5,13,21,31,38]. Particularly, an AC satis-
fies structure cohesiveness (i.e., its vertices are closely linked
to eachother) and keyword cohesiveness (i.e., its vertices have
keywords in common). Figure 1 illustrates an AC (circled),
which is a connected subgraph with vertex degree 3; its ver-
tices {Jack, Bob, John, Mike} have two keywords (i.e.,
“research” and “sports”) in common.

Prior works The problems related to retrieving com-
munities from a graph can generally be classified into

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0482-5&domain=pdf
http://orcid.org/0000-0002-5047-8593

804 Y. Fang et al.

Bob:{research, sports, yoga}

Tom:{fiction, film, game}

Alice:{art, music, yoga}

Jack:{research, sports, tour}

Mike:{film, research, sports}

Anna:{art, cook, music}

Ada:{art, cook, music}
John:{research, sports, web} Alex:{chess, tour, research}

Fig. 1 Attributed graph and AC (circled)

Table 1 Classification of works in community retrieval

Graph type Community
detection (CD)

Community
search (CS)

Non-attributed [13,31] [4,5,21,22,25,38]

Attributed [27,30,34,42,43,46] ACQ [9,10]

community detection (CD) and community search (CS). In
general, CD algorithms aim to retrieve all communities for a
graph [13,27,30,31,34,42,43,46]. These solutions are not
“query-based”, i.e., they are not customized for a query
request (e.g., a user-specified query vertex).

Moreover, they can take a long time to find all the commu-
nities for a large graph, and so they are not suitable for quick
or online retrieval of communities. To solve these problems,
CS solutions have been recently developed [2,4,5,21,22,38].
These approaches are query-based, and are able to derive
communities in an “online” manner. However, existing CS
algorithms assume non-attributed graphs, and only use the
graph structure information to find communities. TheACQ is
a class of CS problem for attributed graphs. As we will show,
the use of keyword information can significantly improve the
effectiveness of the communities retrieved. Table 1 summa-
rizes some representative existing works in this area.

Features of ACs We now present more details of ACs.
• Ease of interpretationAsdemonstrated in Fig. 1, anAC

contains tightly connected vertices with similar contexts or
backgrounds. Thus, an ACQ user can focus on the common
keywords or features of these vertices (e.g., the vertices of the
AC in this example contain “research” and “sports”, reflect-
ing that all members of this AC like research and sports).
We call the set of common keywords among AC vertices the
AC-label. In our experiments, the AC-labels facilitate under-
standing of the vertices that form the AC.

The design of ACs allows it to be used in setting up of
social events. For example, if a Twitter user has many key-
words about traveling (e.g., he posted a lot of photos about
his trips, with keywords), issuing an ACQ with this user as
the query vertex may return other users interested in trav-
eling, because their vertices also have keywords related to
traveling. A group tour can then be recommended to them.

• Personalization The query user of ACQ can control
the semantics of the AC, by specifying a set of S of key-

Jim Gray

Michael Stonebraker

Hector Garcia-Moina Stanley B. Zdonik

Gerhard WeikumBruce G. Lindsay

Michael L. Brodie

(a)

Jim Gray

Peter Z. Kunszt

Christopher Stoughton

Alexander S. Szalay

Jordan Raddick

Jan Vandenberg

Ani Thakar

Tanu Malik

(b)

Fig. 2 Two ACs of Jim Gray. a S ={transaction, data, management,
system, research}, b S ={sloan, digital, sky, data, sdss}

words. Intuitively, S decides the meaning of the AC based
on the query user’s need. If we let q =Jack, k = 2 and
S = {research}, the AC is formed by {Jack, Bob, John,
Mike, Alex}, who are all interested in research. Let us con-
sider another example in the DBLP bibliographical network,
where each vertex’s attribute is represented by the top-20 fre-
quent keywords in their publications. Let q =Jim Gray. If
S is the set of keywords {transaction, data, management, sys-
tem, research}, we obtain the AC in Fig. 2a, which contains
six prominent database researchers closely related to Jim. On
the other hand, when S is {sloan, digital, sky, survey, SDSS},
the ACQ yields another AC in Fig. 2b, which indicates the
seven scientists involved in the SDSS project.1 Thus, with
the use of different keyword sets S, different “personalized”
communities can be obtained.

Existing CS algorithms, which do not handle attributed
graphs,maynot produce the twoACs above. For example, the
CS algorithm in [38] returns the community with all the 14
vertices shown in Fig. 2a, b. The main reasons are: (1) these
vertices are heavily linkedwith Jim; and (2) the keywords are
not considered. In contrast, the use of set S in the ACQ places
these vertices into two communities, containing vertices that
are cohesive in terms of structure and keyword. This allows
a user to focus on the important vertices that are related to S.
For example, using the AC of Fig. 2a, a database conference
organizer can invite speakers who have a close relationship
with Jim.

The personalization feature is also useful in marketing.
Suppose that Mary, a yoga lover, is a customer of a gym. An
ACQ can be issued on a social network, with Mary as the
query vertex and S = {yoga}. Since members of the AC con-
tain the keyword “yoga”, they can be the gym’s advertising
targets. On the other hand, current CS algorithms may return
a community that contains one or more vertices without the
keyword “yoga”. It is not clear whether the corresponding
user of this vertex is interested in yoga.

• Online evaluation Similar to other CS solutions, we
have developed efficient ACQ algorithms for large graphs,
allowing ACs to be generated quickly upon a query request.
On the contrary, existing CD algorithms [27,30,34,46] that
generate all communities for a graph are often considered

1 URL of the SDSS project: http://www.sdss.org.

123

http://www.sdss.org

Effective and efficient attributed community search 805

to be offline solutions, since they are often costly and time-
consuming, especially on very large graphs.

Technical challenges and our contributionsWeface two
important questions: (1) What should be a sound definition
of an AC? (2) How to evaluate ACQ efficiently? For the first
question, we define an AC based on the minimum degree,
which is one of the most common structure cohesiveness
metrics [5,13,31,38]. Thismeasure requires that every vertex
in the community has a degree of k ormore.We formulate the
keyword cohesiveness as maximizing the number of shared
keywords in keyword set S. The shared keywords naturally
reveal the common features among vertices (e.g., common
interest of social network users).

The second question is not easy to answer, because the
attributed graph G to be explored can be very large, and the
(structure and keyword) cohesiveness criteria can be com-
plex to handle. A simple way is first to consider all the
possible keyword combinations, and then return the sub-
graphs, which satisfy the minimum degree constraint and
have themost shared keywords. This solution,which requires
the enumeration of all the subsets of q’s keyword set, has
a complexity exponential to the size l of q’s keyword set.
In our experiments, for some queries, l can be up to 30,
resulting in the consideration of 230 = 1,073,741,824 sub-
sets of q. The algorithm is impractical, especially when l is
large.

We observe the anti-monotonicity property, which states
that given a set S of keywords, if it appears in every vertex
of an AC, then for every subset S′ of S, there exists an AC
in which every vertex contains S′. We use this intuition to
propose better algorithms. We further develop the CL-tree,
an index that organizes the vertex keyword data in a hierar-
chical structure. The CL-tree has a space and construction
time complexity linear to the size of G, i.e., O(m +̂l · n),
where n, m are the numbers of vertices and edges, and̂l is the
average number of keyword of each vertex in G. Based on
the CL-tree index, we have developed three different ACQ
algorithms, and they are able to achieve a superior perfor-
mance. In practice, graphs are continuously evolving [1,33].
For instance, in the friendship network of Facebook, users
may change their profiles, and make new friends or remove
friendship. Thus the CL-tree index needs to be updated to
reflect the changes in the graph. A straightforward method
to handle the update is to rebuild the CL-tree from scratch.
However, this can be quite computationally expensive, espe-
cially when the updates are frequent. To alleviate this issue,
we have developed efficient algorithms to maintain the CL-
tree index for dynamic graphs.

In addition, we have proposed two problems that are
related to the ACQ problem, which are called Approximate
ACQ problem (or ACQ-A) and Multiple-vertex ACQ prob-

lem (or ACQ-M) respectively. ACQ-A is an approximation
version of the ACQ query, in which vertices of an AC do
not need to exactly share the same keywords as that in ACQ.
It relaxes the constraint on sharing common keywords; this
could be quite useful if vertices of the graph do not have
much keyword information. ACQ-M generalizes the ACQ
query for supporting multiple query vertices. It takes multi-
ple query vertices as input and returns the ACs containing all
of them. This could be helpful if we want to find the ACs for
a group of query vertices. For example, a database workshop
organizer may be interested in inviting researchers who have
a close relationship with both Jim Gray and Michael Stone-
braker. To answer the queries for ACQ-A and ACQ-M, we
have also developed efficient query algorithms.

Wehave performed extensive experiments on six large real
graph datasets.We found that a large number of commonkey-
words appear across vertices in our graph datasets. In DBLP,
for instance, an ACwith one common keyword contains over
5000 vertices on average; anACwith two common keywords
contains over 700 vertices. Hence, using shared keywords
among vertices as keyword cohesiveness makes sense. We
have also studied how to quantify the quality of a community,
based on occurrence frequencies of keywords and similarity
between the keyword sets of two vertices. We conducted a
detailed case study on DBLP. These results confirm the supe-
riority of the AC over the communities returned by existing
community detection and community search algorithms, in
terms of community quality. The performance of our best
algorithm is 2 to 3 order-of-magnitude faster than solutions
that do not use the CL-tree. We have also experimentally
evaluated the index maintenance algorithms and the results
show that they are very efficient. Moreover, we perform the
queries of the ACQ-A and ACQ-M problems, and the results
show that our index-based algorithms are much faster than
the baseline algorithms. In addition, our approaches achieve
a higher efficiency than existing community search solu-
tions.

In addition, we have designed a system, called C-Explorer
[10], based onACQ. It assists users in extracting, visualizing,
and analyzing communities in attributed graphs. Moreover,
C-Explorer implements several state-of-the-art CS and CD
algorithms, as well as functions for analyzing their effective-
ness. Figure 3 shows the user interface of C-Explorer.

Organization We review the related work in Sect. 2, and
define the ACQ problem in Sect. 3. Section 4 presents the
basic solutions, and Sect. 5 discusses the CL-tree index. We
present the query algorithms in Sect. 6. In Sect. 7, we dis-
cuss how to maintain the CL-tree index for dynamic graphs.
In Sect. 8, we introduce two problems related to the ACQ
problem. We report the experimental results are in Sect. 9
and conclude the paper in Sect. 10.

123

806 Y. Fang et al.

Fig. 3 The interface of C-Explorer [10]

2 Related work

Community detection (CD) A large class of studies aim
to discover or detect all the communities from an entire
graph. Table 1 summarizes these works. Earlier solutions,
such as [13,31], employ link-based analysis to obtain these
communities. However, they do not consider the textual
information associated with graphs. Recent works focus on
attributed graphs, and use clustering techniques to identify
communities. For instance, Zhou et al. [46] considered both
links and keywords of vertices to compute the vertices’ pair-
wise similarities, and then clustered the graph. Subbian et
al. [39] explored noisy labeled information of graph vertices
for finding communities. Qi et al. [32] studied a problem
of dynamically maintaining communities of moving objects
using their trajectories. Ruan et al. [34] proposed a method
calledCODICIL. This solution augments the original graphs
by creating new edges based on content similarity, and then
uses an effective graph sampling to boost the efficiency of
clustering. We will compare ACQ with this method experi-
mentally.

Another common approach is based on topic models.
In [27,30], the Link-PLSA-LDA and Topic-Link LDA
models jointly model vertices’ content and links based on the
LDAmodel. In [42], the attributed graph is clustered based on
probabilistic inference. In [35], the topics, interaction types
and the social connections are considered for discovering
communities. CESNA [43] detects overlapping communi-
ties by assuming communities “generate” both the link and
content. A discriminative approach [44] has also been con-
sidered for community detection. As discussed before, CD
algorithms are generally slow, as they often consider the pair-
wise distance/similarity among vertices. Also, it is not clear
how they can be adapted to perform online ACQ. In this
paper, we propose online algorithms for finding communi-
ties on attributed graphs.

Community search (CS) Another class of solutions aims
to obtain communities in an “online” manner, based on a
query request. For example, given a vertex q, several exist-
ing works [4,5,21,25,38] have developed fast algorithms
to obtain a community for q. To measure the structure
cohesiveness of a community, the minimum degree is often
used [5,25,38]. Sozio et al. [38] proposed the first algo-
rithm Global to find the k-ĉore containing q. Cui et al. [5]
proposed Local, which uses local expansion techniques to
enhance the performance ofGlobal.Wewill compare these
two solutions in our experiments.Other definitions, including
k-clique [4], k-truss [21] and edge connectivity [19,20], have
also been considered for searching communities. A recent
work [25] finds communities with high influence and another
work consider spatial locations for finding communities [11].
These works assume non-attributed graphs, and overlook the
rich information of vertices that come with attributed graphs.
As we will see, performing CS on attributed graphs is bet-
ter than on non-attributed graphs. An earlier version of this
paper can be found in [9].

Graph keyword search Given an attributed graph G and
a set Q of keywords, graph keyword search solutions out-
put a tree structure, whose nodes are vertices of G, and
the union of these vertices’ keyword sets is a superset of
Q [6,23]. Recent work studies the use of a subgraph of G as
the query output [24]. These works are substantially differ-
ent from the ACQ problem. First, they do not specify query
vertices as required by the ACQ problem. Second, the tree
or subgraph produced do not guarantee structure cohesive-
ness. Third, keyword cohesiveness is not ensured; there is
no mechanism that enforces query keywords to be shared
among the keyword sets of all query output’s vertices. Thus,
these solutions are not designed to find ACs.

3 The ACQ problem

We now discuss the attributed graph model, the k-core, and
the AC. In the CS and CD literature, most existing works
assume that the underlying graph is undirected [25,34,38,
42]. We also suppose that an attributed graph G(V, E) is
undirected, with vertex set V and edge set E . Each vertex
v ∈ V is associated with a set of keywords, W (v). Let n
and m be the corresponding sizes of V and E . The degree
of a vertex v of G is denoted by degG(v). Table 2 lists the
symbols used in the paper.

A community is often a subgraph of G that satisfies
structure cohesiveness (i.e., the vertices contained in the
community are linked to each other in someway). A common
notion of structure cohesiveness is that the minimum degree
of all the vertices that appear in the community has to be k
or more [3,5,7,25,37,38]. This is used in the k-core and the
AC. Let us discuss the k-core first.

123

Effective and efficient attributed community search 807

Table 2 Symbols and meanings

Symbol Meaning

G(V, E) A graph with vertex set V and edge set E

W (v) The keyword set of vertex v

degG(v) The degree of vertex v in G

G[S′] The largest connected subgraph of G s.t. q ∈ G[S′] and
∀v ∈ G[S′], S′ ⊆ W (v)

Gk [S′] The largest connected subgraph of G s.t. q ∈ Gk [S′] and
∀v ∈ Gk [S′], degGk [S′]v ≥ k and S′ ⊆ W (v)

A:{w, x, y}

D:{x, y, z}
B:{x}

C:{x, y}
F:{y}

E:{y, z}
G:{x, y}

J:{x}

I:{x}

H:{y, z}

1
2 3

Core numberr Vertices
0 J
1 F, G, H, I
2 E
3 A, B, C, D

(a) (b)

Fig. 4 Illustrating the k-core and the AC. a graph, b core number

Definition 1 (k-core [3,37]) Given an integer k (k ≥ 0), the
k-core of G, denoted by Hk , is the largest subgraph of G,
such that ∀v ∈ Hk, degHk (v) ≥ k.

We say that Hk has an order of k. Notice that Hk may
not be a connected graph [3], and its connected components,
denoted by k-ĉores, are usually the “communities” returned
by k-ĉore search algorithms.

Example 1 In Fig. 4a, each dashed circle with a number k
points to the k-ĉores contained in that ellipse. {A, B,C, D}
forms a 3-core and a 3-ĉore. The 1-core has vertices
{A, B,C, D, E, F,G, H, I }, and is composed of two 1-ĉore
components: {A, B, C, D, E, F,G} and {H, I }.

Observe that k-cores are “nested” [3]: given two positive
integers i and j , if i < j , then Hj ⊆ Hi . In Fig. 4a, H3 is
contained in H2, which is nested in H1.

Definition 2 (Core number) Given a vertex v ∈ V , its core
number, denoted by coreG [v], is the highest order of a k-core
that contains v.

A list of core numbers and their respective vertices for
Example 1 are shown in Fig. 4b. An O(m) algorithm [3] was
proposed to compute the core number of every vertex. We
now formally define the ACQ problem as follows.

Problem 1 (ACQ)Given a graphG(V, E), a positive integer
k, a vertex q ∈ V and a set of keywords S ⊆ W (q), return a
set G of graphs, such that ∀Gq ∈ G, the following properties
hold:

• Connectivity Gq ⊆ G is connected and q ∈ Gq ;

• Structure cohesiveness ∀v ∈ Gq , degGq (v) ≥ k;
• Keyword cohesiveness The size of L(Gq , S) is maxi-
mal, where L(Gq , S) = ∩v∈Gq (W (v) ∩ S) is the set of
keywords shared in S by all vertices of Gq .

• Maximal structure There is no other community Gq
′,

which satisfies above properties with L(Gq
′, S) =

L(Gq , S), and Gq ⊂ Gq
′.

We call Gq the attributed community (or AC) of q, and
L(Gq , S) the AC-label of Gq . In Problem 1, the first two
properties are also specified by the k-ĉore of a given ver-
tex q [38]. The keyword cohesiveness (Property 3), which
is unique to Problem 1, enables the retrieval of communi-
ties whose vertices have common keywords in S. We use
S to impose semantics on the AC produced by Problem 1.
By default, S = W (q), which means that the AC generated
should have keywords common to those associated with q.
If S ⊂ W (q), it means that the ACQ user is interested in
forming communities that are related to some (but not all)
of the keywords of q. A user interface could be developed to
display W (q) to the user, allowing her to include the desired
keywords into S. For example, in Fig. 4a, if q = A, k = 2
and S = {w, x, y}, the output of Problem 1 is {A,C, D},
with AC-label {x, y}, meaning that these vertices share the
keywords x and y.

We require L(Gq , S) to bemaximal in Property 3, because
we wish the AC(s) returned only contain(s) the most related
vertices, in terms of the number of common keywords. Let
us use Fig. 4a to explain why this is important. Using the
same query (q = A, k = 2, S = {w, x, y}), without the
“maximal” requirement, we can obtain communities such as
{A, B, E} (which do not share any keywords), {A, B, D},
or {A, B,C} (which share 1 keyword). Note that there does
not exist an AC with AC-label being exactly {w, x, y}. Our
experiments (Sect. 9) show that imposing the “maximal” con-
straint yields the best result. Thus, we adopt Property 3 in
Problem 1. If there is no AC whose vertices share one or
more keywords (i.e., |L(Gq , S)| = 0), we return the sub-
graph of G that satisfies Properties 1 and 2 only,2 because
in this case the keywords cannot play roles for distinguish-
ing the communities in the graph and the attributed graph
can be seen as a non-attributed graph. The maximal struc-
ture property guarantees that any AC cannot be contained in
a super-AC with equivalent structure cohesiveness and key-
word cohesiveness.

There are other candidates for structure cohesiveness (e.g.,
k-truss, k-clique) and keyword cohesiveness (e.g., Jaccard
similarity and string edit distance).AnACcan also be defined
in differentways. For example, anACQusermay specify that
an AC returned must have vertices that contain a specific set

2 In practice, the query user can be alerted by the system when there is
no sharing among the vertices.

123

808 Y. Fang et al.

of keywords. An interesting direction is to extend ACQ to
support for these criteria.

4 Basic solutions

For ease of presentation, we say that v contains a set S′ of
keywords, if S′ ⊆ W (v). We use G[S′] to denote the largest
connected subgraph of G, where each vertex contains S′ and
q ∈ G[S]. We use Gk[S′] to denote the largest connected
subgraph of G[S′], in which every vertex has degree being at
least k in Gk[S′]. We call S′ a qualified keyword set for the
query vertex q on the graph G, if Gk[S′] exists.

Given a query vertex q, a straightforward method to
answer ACQ performs three steps. First, all nonempty sub-
sets of S, S1, S2, . . . , S2l−1 (l = |S|), are enumerated. Then,
for each subset Si (1≤ i ≤ 2l − 1), we verify the existence of
Gk[Si] and compute it when it exists (We postpone to discuss
the details). Finally, we output the subgraphs having themost
shared keywords among all Gk[Si].

One major drawback of the straightforward method is that
we need to compute 2l–1 subsets of attributes and verify the
existence of corresponding subgraphs (i.e.,Gk [Si]). For large
values of l, the computation overhead renders the method
impractical, and we do not further consider this method in
the paper. To alleviate this issue, we propose the following
two-step framework.

4.1 Two-step framework

The two-step framework is mainly based on the following
anti-monotonicity property.

Lemma 1 (Anti-monotonicity) Given a graph G, a vertex
q ∈ G and a set S of keywords, if there exists a subgraph
Gk[S], then there exists a subgraph Gk[S′] for any subset
S′ ⊆ S.

All the proofs of lemmas studied in this paper can be found
in “Appendix A”. The anti-monotonicity property allows us
to stop examining all the super sets of S′(S′ ⊆ S), once
have verified that Gk[S′] does not exist. The basic solution
begins with examining the set, Ψ1, of size-1 candidate key-
word sets, i.e., each candidate contains a single keyword of
S. It then repeatedly executes the following two key steps,
to retrieve the size-2 (size-3, …) qualified keyword subsets
until no qualified keyword sets are found.

• Verification For each candidate S′ inΨc (initially c = 1),
mark S′ as a qualified set if Gk[S′] exists.

• Candidate generation For any two current size-c quali-
fiedkeyword setswhichonly differ in onekeyword, union
them as a new expanded candidate with size-(c+ 1), and
put it into set Ψc+1, if all its subsets are qualified, by

Lemma 1. Detailed pseudocodes are presented in Algo-
rithm 1.

Algorithm 1 Generate candidate keyword sets
1: function geneCand(Φ)

2: Ψ ← ∅;
3: for each Si ∈ Φ do
4: for each S j ∈ Φ do
5: if Si and S j differs at the last keyword then
6: initialize S′=Si ∪ S j ;
7: if S′ cannot be pruned by Lemma 1 then
8: Ψ .add(S′);
9: return Ψ ;

Among the above steps, the key issue is how to compute
Gk[S′]. Since Gk[S′] should satisfy the structure cohe-
siveness (i.e., minimum degree at least k) and keyword
cohesiveness (i.e., every vertex contains keyword set S′).
Intuitively, we have two approaches to compute Gk[S′]:
either searching the subgraph satisfying degree constraint
first, followed by further refining with keyword constraints
(called basic-g); or vice versa (called basic-w). Their
pseudocodes are presented in “Appendix B”. In addition,
their time complexities are O(m · 2l), because in the worst
case all the subsets of S are enumerated. However, in practice
they are more efficient than such worst-case time complexi-
ties.

5 CL-tree index

Themajor limitation ofbasic-g andbasic-w is that they
need to find the k-ĉores and do keyword filtering repeatedly.
Thismakes the community search very inefficient. To achieve
higher query efficiency,we propose a novel index, called CL-
tree (Core Label tree), which organizes both the k-ĉores
and keywords into a tree structure. Based on the index, the
efficiencyof answeringACQand its variants can be improved
significantly. We first introduce the index in Sect. 5.1, and
then propose two index construction methods (i.e., Basic
and Advanced) in Sect. 5.2.

5.1 Index overview

The CL-tree index is built based on the key observation that
cores are nested. Specifically, a (k + 1)-ĉore must be con-
tained in a k-ĉore. The rationale behind is, a subgraph has a
minimum degree at least k+1 implies that it has a minimum
degree at least k. Thus, all k-ĉores can be organized into a
tree structure.3 We illustrate this in Example 2.

3 We use “node” to mean “CL-tree node” in this paper.

123

Effective and efficient attributed community search 809

0

1 1

2

3
ABCD

ABCDE

ABCDEFG

ABCDE
FGHIJ

HI

(a)

w: A
x: A,B,C,D
y: A,C,D
z: D

y: E
z: E

x: G
y: F, G

x: I
y: H
z: H

0

1 1

2

3
ABCD

E

FG

J

HIr1

r2

r3

x: J

(b)

Fig. 5 An example CL-tree index. a tree structure, b CL-tree index

Example 2 Consider the graph in Fig. 4a. All the k-ĉores
can be organized into a tree as shown in Fig. 5a. The height
of the tree is 4. For each tree node, we attach the core number
and vertex set of its corresponding k-ĉore.

From the tree structure in Fig. 5a, we conclude that, if a
(k + 1) − ĉore (denoted as Ck+1) is contained in a k-ĉore
(denoted as Ck), then there is a tree node corresponding to
Ck+1 and its parent node corresponds to Ck . Besides, the
height of the tree is at most kmax + 1, where kmax is the
maximum core number.

The tree structure in Fig. 5a can be stored compactly in
Fig. 5b. The key observation is that, for any internal node p
in the tree, the vertex sets of its child nodes are the subsets
of p’s vertex set, because of the inclusion relationship. To
save space cost, we can remove the redundant vertices that
are shared by p’s child nodes from p’s vertex set. After such
removal, we obtain a compressed tree, where each graph ver-
tex appears only once. This structure constitutes the CL-tree
index, the nodes of which are further augmented by inverted
lists (Fig. 5b). For each keyword e that appears in a CL-tree
node, a list of IDs of vertices whose keyword sets contain e is
stored. For example, in node r3, the inverted list of keyword
y contains {A,C, D}. As discussed later, given a keyword
set T , these inverted lists allow efficient retrieval of vertices
whose keyword sets contain T . To summarize, each CL-tree
node p contains five elements:

• coreNum: the core number of the k-ĉore;
• vertexSet: a set of graph vertices;
• invertedList: a list of < key, value > pairs, where the
key is a keyword contained by vertices in vertex Set and
the value is the list of vertices in vertex Set containing
key;

• childList: a list of child nodes;
• fatherNode: the father node of p.

Figure 5b depicts the CL-tree index for the example graph
in Fig. 4a, the elements of each tree node are labeled explic-
itly. Using the CL-tree, the following two key operations

used by our query algorithms (Sect. 6), can be performed
efficiently.

• Core-locatingGiven a vertex q and a core number c, find
the k-ĉorewith core number c containing q, by traversing
the CL-tree.

• Keyword-checking Given a k-ĉore, find vertices which
contain a given keyword set, by intersecting the inverted
lists of keywords contained in the keyword set.

Remarks The CL-tree can also support k-ĉore queries
on general graphs without keywords. For example, it can be
applied to finding k-ĉore in previous CS methods [38].

Space cost Since each graph vertex appears only once and
each keyword only needs constant space cost, the space cost
of keeping such an index is O(̂l · n), where ̂l denotes the
average size of W (v) over V .

5.2 Index construction

5.2.1 The basic method

As k-ĉores of a graph are nested naturally, it is straightfor-
ward to build the CL-tree recursively in a top-down manner.
Specifically, we first generate the root node for 0-core, which
is exactly the entire graph. Then, for each k-ĉore of 1-core,
we generate a child node for the root node. After that, we only
remain vertices with core numbers being 0 in the root node.
Then for each child node, we can generate its child nodes in
the similar way. This procedure is executed recursively until
all the nodes are well built.

Algorithm 2 Index construction: basic
1: function buildIndex(G(V, E))

2: coreG [] ← k-core decomposition on G;
3: k ←0, root ← (k, V);
4: buildNode(root , 0);
5: build an inverted list for each tree node;
6: return root ;
7: function buildNode(root , k)
8: k ← k + 1;
9: if k ≤ kmax then
10: obtain Uk from root ;
11: compute the connected components for the induced graph on

Uk ;
12: for each connected component Ci do
13: build a tree node pi ← (k,Ci .vertex Set);
14: add pi into root.childList ;
15: remove Ci ’s vertex set from root.vertex Set ;
16: buildNode(pi , k);

Algorithm 2 illustrates the pseudocodes. We first do k-
core decomposition using the linear algorithm [3], and obtain
an array coreG [] (line 2), where coreG [i] denotes the core

123

810 Y. Fang et al.

number of vertex i inG.We denote themaximal core number
by kmax . Then, we initialize the root node by the core number
k = 0 and V (line 3). Next, we call the function buildNode
to build its child nodes (line 4). Finally, we build an inverted
list for each tree node and obtain a well built CL-tree (lines
5–6).

In buildNode, we first update k and obtain the vertex
set Uk , which is a set of vertices with core numbers being at
least k, from root.vertex Set . Then we find all the connected
components from the subgraph induced by Uk (lines 8–11).
Since each connected componentCi corresponds to a k-ĉore,
we build a tree node pi with core number k and the vertex
set of Ci , and then link it as a child of root (lines 12–14).
We also update root’s vertex set by removing vertices (line
15), which are shared by Ci . Finally, we call the buildNode
function to build pi ’s child nodes recursively until all the tree
nodes are created (line 16).

Complexity analysis The k-core decomposition can be
done in O(m) [3]. The inverted lists of each node can be built
in O(̂l · n). In function buildNode, we need to compute the
connected components with a given vertex set, which costs
O(m) in the worst case. Since the recursive depth is kmax ,
the total time cost is O(m · kmax +̂l · n). Similarly, the space
complexity is O(m +̂l · n).

5.2.2 The advanced method

While the basicmethod is easy to implement, it meets effi-
ciency issues when both the given graph size and its kmax

value are large. For instance, when given a clique graph with
n vertices (i.e., edges exist between every pair of nodes), the
value of kmax is n–1. Therefore, the time complexity of the
basic method could be O((m +̂l) · n), which may lead to
lowefficiency for large-scale graphs. To enablemore efficient
index construction, we propose the advanced method,
whose time and space complexities are almost linear with
the size of the input graph.

The advancedmethod builds the CL-tree level by level
in a bottom-up manner. Specifically, the tree nodes corre-
sponding to larger core numbers are created prior to those
with smaller core numbers. For ease of presentation, we
divide the discussion into twomain steps: creating tree nodes
and creating tree edges.

1. Creating tree nodes We observe that if we acquire the
vertices with core numbers at least c and denote the induced
subgraph on the vertices as Tc, then the connected compo-
nents of Tc have one-to-one correspondence to the c-ĉores. A
simple algorithmwould be, searching connected components
for Tc(0 ≤ c ≤ kmax) independently, followed by creat-
ing one node for each distinct component. This algorithm
apparently costs O(kmax · m) time, as computing connected
components takes linear time.

However, we can do better if we can incrementally update
the connected components in a level by level manner (i.e.,
maintain the connected components of Tc+1 from those of
Tc). We note that, such a node creation process is feasible
by exploiting the classical union-find forest [18]. Generally
speaking, the union-find forest enables efficient mainte-
nance of connected components of a graph when edges are
incrementally added. Using union-find forest to maintain
connected components follows a process of edge exam-
ination. Initially, each vertex is regarded as a connected
component. Then, edges are examined one byone.During the
examine process, two components are merged together when
encounters an edge connecting them. To achieve an efficient
merge of components, the vertices in the component form
a tree. The tree root acts as the representative vertex of the
component. As such, merging two components is essentially
linking two root vertices together. To guarantee the CL-tree
nodes are formed in a bottom-upmanner, we assign an exam-
ine priority to each edge. The priority is defined by the larger
value of the two core numbers corresponding to the two end
vertices of an edge. The edges associated to vertices with
larger core numbers are examined first.

2. Creating tree edgesTree edges are also inserted during
the graph edge examination process. In particular, when we
examine a vertex v with a set, B, of its neighbors, whose
core numbers are larger than coreG [v], we require that the
tree node containing v should link to the tree node containing
the vertex, whose core number is the smallest among all the
vertices in B. Nevertheless, the classical union-find forest is
not able to maintain such information. To address this issue,
we thus propose an auxiliary data structure, called Anchored
Union-Find, based on the classical union-find forest.Wefirst
define anchor vertex.

Algorithm 3 Functions on the AUF data structure
1: function makeSet(x)
2: x .parent, x .anchor ← x ;
3: x .rank ← 0;
4: function find(x)
5: if x .parent=x then x .parent ← find(x .parent);
6: return x .parent ;
7: function union(x , y)
8: x Root ← find(x), yRoot ← find(y);
9: if x Root=yRoot then return ;
10: if x Root.rank < yRoot.rank then
11: x Root.parent ← yRoot ;
12: else if x Root.rank > yRoot.rank then
13: yRoot.parent ← x Root ;
14: else
15: yRoot.parent ← x Root ;
16: x Root.rank ← x Root.rank + 1;
17: function updateAnchor(x , coreG [], y)
18: x Root ← find(x);
19: if coreG [x Root.anchor] > coreG [y] then
20: x Root.anchor ← y;

123

Effective and efficient attributed community search 811

Algorithm 3 presents the four functions of the anchored
union-find (AUF) data structure. The functions find and
union are exactly the same as that of the classical union-find
data structure [18]. For function makeSet, the only change
made on the classicalmakeSet is that, it initializes x .anchor
as x (line 2). The function updateAnchor is used to update
the anchor vertex of x’s representative vertex. It first finds
x’s representative vertex by calling find (line 18). Then, if
the core number of x’ representative vertex is larger than that
of the current input vertex y, it updates the anchor vertex of
x’s representative vertex as y (lines 19–20).

Complexity analysis of AUF The time complexities of
functions find and union are O(α(n)) [18], where α(n) is
less than 5 for all practical values of n. In functionmakeSet,
the time complexity of makeSet is still O(1). In function
updateAnchor, as find can be completed in O(α(n)) and
updating anchor can be completed in O(1), the total time
cost of function updateAnchor is O(α(n)).

Definition 3 (Anchor vertex) Given a connected subgraph
G ′ ⊆ G, the anchor vertex is the vertex with core number
being min{coreG [v]|v ∈ G ′}.

The AUF is an extension of union-find forest, in which
each tree has an anchor vertex, and it is attached to the root
node. In CL-tree, for any node p with corresponding k-ĉore
Ck , its child nodes correspond to the k-ĉores, which are con-
tained by Ck and have core numbers being the most close to
the core number of node p. This implies that, when build-
ing the CL-tree in a bottom-up manner, we can maintain the
anchor vertices for the k-ĉores dynamically, and they can
be used to link nodes with their child nodes. In addition, we
maintain a vertex-node map, where the key is a vertex and
the value is the tree node containing this vertex.

Algorithm 4 presents the advanced method. Similar
with basicmethod, we first conduct k-decomposition (line
2). Then, for each vertex, we initialize an AUF tree node
(line 3). We group all the vertices into sets (line 4), where set
Vk contains vertices with core numbers being exactly k (line
5). Next, we initialize k as kmax and the vertex-node map
map, where the key is a vertex and the value is a CL-tree
node whose vertex set contains this vertex. In the while loop
(lines 6–25), we first find the set V ′ of the representatives for
vertices in Vk , then compute the connected components for
vertex set Vk ∪ V ′ (lines 7–9). Next, we create a node pi for
each component (lines 10–11). For each vertex v ∈ {Ci−V ′},
we add a pair (v, pi) to themap (lines 12–13). Then for each
of v’s neighbor, u, if its core number is at least coreG [v], we
link u and v together in the AUF by a union operation (lines
14–16), and find pi ’s child nodes using the anchor of theAUF
tree (lines 17–21). After vertex v has been added into the CL-
tree, we update the anchor (lines 22–24). Then we move to
the upper level in next loop (line 25). After the while loop,
we build the root node of the CL-tree (line 26). Finally, we

Algorithm 4 Index construction: advanced
1: function buildIndex(G(V, E))

2: coreG [] ← k-core decomposition on G;
3: for each v ∈ V do makeSet(v);
4: put vertices into sets V0, V1, · · · , Vkmax ;
5: k ← kmax , map ← ∅;
6: while k ≥ 0 do
7: V ′ ← ∅;
8: for each v ∈ Vk do V ′.add(find(v));
9: compute connected components for Vk ∪ V ′;
10: for each component with vertex set Ci do
11: create a node pi using (k, {Ci − V ′});
12: for each v ∈ {Ci − V ′} do
13: map.add(v, pi);
14: for each u ∈ v’s neighbor vertices do
15: if coreG [u] ≥ coreG [v] then
16: union(u, v);
17: if coreG [u] > coreG [v] then
18: uRoot ←find(u);
19: uAnchor ← uRoot.anchor ;
20: p′ ← map.get(uAnchor);
21: add p′ to p’s child List;
22: vRoot ←find(v);
23: if coreG [vRoot.anchor] > coreG [v] then
24: updateAnchor(vRoot , coreG [], v);
25: k ← k − 1;
26: build the root node root ;
27: build an inverted list for each tree node;
28: return root .

build the inverted list for each tree node and obtain the built
index (lines 27–28).

Complexity analysis In Algorithm 4, lines 1–3 can be
completed in O(m) (We assume m ≥ n). In the while loop,
the number of operations on each vertex and its neighbors are
constant, and each can be done in O(α(n)), where α(n), the
inverse Ackermann function, is less than 5 for all remotely
practical values of n. The keyword inverted lists of all the
tree nodes can be computed in O(n ·̂l). Therefore, the CL-
tree can be built in O(m · α(n) + n ·̂l). The space cost is
O(m + n ·̂l), as maintaining an AUF takes O(n).

Example 3 Figure 6 depicts an example graph with 14 ver-
tices A, . . . , N . Vi denotes the set of vertices whose core
numbers are i . When k = 3, we first generate two leaf nodes
p1 and p2, then update the AUF, where roots’ anchor vertices
are in the round brackets.When k = 2, we first generate node
p3, then link it to p1, and then update the AUF forest. When
k = 1, we first generate nodes p4 and p5. Specifically, to
find the child nodes of p4, we first find its neighbor A, then
find A’s parent B using current AUF forest. Since the anchor
vertex of B is E and E points to p3 in the inverted array, we
add p3 into p4’s child List. When k = 0, we generate p6 and
finish the index construction.

123

812 Y. Fang et al.

C

D

A

F

E

G

B

H
N

H M

EFG

ABCD

0

1 1

2

3

IJKL
J

K

L

I

M

B(B)

CA D

k=3
K(K)

JI L

B(E)

CA D FE G

k=2 k=1
K(K)

JI L

B(H)

CA D FE G H

K(M)

JI L M

3

A B C D E F G H

N

I J K L M NVertex-node map:

Anchored union-find forests:

Sets Vextex IDs
V0 N
V1 H, M
V2 E, F, G
V3 A, B, C, D, I, J, K, L

p1

p2p3

p4 p5

p6

Fig. 6 An index built by advanced method

6 Query algorithms

In this section, we present three query algorithms based on
the CL-tree index. Based on how we verify the candidate
keyword sets, we divide our algorithms into incremental
algorithms (from examining smaller candidate sets to larger
ones) anddecremental algorithm (fromexamining larger can-
didate sets to smaller ones). We propose two incremental
algorithms called Inc-S (Incremental Space efficient) and
Inc-T (Incremental Time efficient), to trade off between
the memory consumption and the computational overhead.
The decremental algorithm is called Dec (Decremental). Our
interesting finding is that, while Dec seems not intuitive, it
ranks as the most efficient one. In addition, their time com-
plexities are O(m × 2l), because in the worst case all the
subsets of S are enumerated. However, in practice they are
more efficient than such worse-case time complexities.

6.1 The incremental algorithms

While the high-level idea of incremental algorithms resem-
bles the basic solutions (see Sect. 4), Inc-S and Inc-T
advance them with the exploitation of the CL-tree. Specifi-
cally, they can always verify the existence of Gk[S′]within a
subgraph of G instead of the entire graph G. More interest-
ingly, the subgraph for such verifications shrinks when the
candidate set S′ expands. Therefore, a large sumof redundant
computation is cut off during the verification.

6.1.1 Inc-S algorithm

We first introduce a new concept, called subgraph core
number, which is geared to the main idea of Inc-S.

Definition 4 (Subgraph core number) The core number of a
subgraph G ′ of G, coreG [G ′], is defined as min{coreG[v]|
v ∈ G ′}.

Inc-S follows the two-step framework (verification and
candidate generation) introduced in Sect. 4. With the CL-
tree, we improve the verification step as follows.

• Core-based verification For each newly generated size-
(c + 1) candidate keyword set S′ expanded from size-c
sets S1 and S2, mark S′ as a qualified set if Gk[S′] exists
in a subgraph of core number max{coreG [Gk[S1]],
coreG [Gk[S2]]}.

The core-based verification guarantees that, with the
expansion of the candidate keyword sets, the verification
becomes faster as it only needs to examine the existence
of Gk[S′] in a smaller k-ĉore (Recall that cores with large
core numbers are nested in the cores with small core num-
bers). The correctness of such shrunk verification range is
guaranteed by the following lemma.

Lemma 2 Given two subgraphs Gk[S1] and Gk[S2] of a
graph G, for a new keyword set S′ generated from S1 and S2
(i.e., S′ = S1 ∪ S2), if Gk[S′] exists, then it must appear in a
k-ĉore with core number at least

max{coreG [Gk[S1]], coreG [Gk[S2]]}. (1)

The verification process can be further accelerated by
checking the numbers of vertices and edges, as indicated
by Lemma 3.

Lemma 3 Given a connected graph G(V, E) with n = |V |
and m = |E |, if m − n < k2−k

2 − 1, there is no k-ĉore in G.

This lemma implies that, for a connected subgraph G ′,
whose edge and vertex numbers are m and n, if m − n <
k2−k
2 − 1, then we cannot find Gk[S′] from G ′.
We present Inc-S in Algorithm 5. The input is a CL-tree

rooted at root , a query vertex q, a positive integer k and a key-
word set S. We apply core-locating on the CL-tree to
locate the internal nodes whose corresponding k-ĉores con-
tain q (line 2). Note that their core numbers are in the range
of [k, coreG [q]], as required by the structure cohesiveness.
Then, we set l = 0, indicating the sizes of current keyword
sets, and initialize a setΨ of< S′, c > pairs, where S′ is a set
containing a keyword from S and c is the initial core number
k (line 3). Note that we skip those keywords, which are in
S, but not in W (q). In the while loop (lines 4–18), for each
< S′, c > pair, we first perform keyword-checking to
find G[S′] using the keyword inverted lists of the subtree
rooted at node rc. If we cannot ensure that G[S′] does not
contain a k-ĉore by Lemma 3, we then find Gk[S′] from
G[S′] (lines 8–9). If Gk[S′] exists, we put S′ with its core
number into the setΦl (lines 10–11). Next, ifΦl is nonempty,
we generate new candidates by calling geneCand(Φl). For
each candidate S′ in Ψ , we compute the core number using

123

Effective and efficient attributed community search 813

Lemma 2 and update it as a pair in Ψ (lines 12–17); other-
wise, we stop (line 18). Finally, we output the communities
of the latest verified keyword sets (line 19).

Algorithm 5 Query algorithm: Inc-S
1: function query(G, root , q, k, S)
2: find subtree root nodes rk , rk+1, · · · , rcoreG [q];
3: initialize l=0, Ψ using S;
4: while true do
5: l ← l + 1; Φl ← ∅;
6: for each < S′, c > ∈ Ψ do
7: find G[S′] under the root rc;
8: if G[S′] is not pruned by Lemma 3 then
9: find Gk [S′] from G[S′];
10: if Gk [S′] exists then
11: Φl .add(< S′, coreG [Gk [S′]] >);
12: if Φl = ∅ then
13: Ψ ← geneCand(Φl);
14: for each S′ in Ψ do
15: if S′ is generated from S1 and S2 then
16: c ← max{coreG [Gk [S1]], coreG [Gk [S2]]};
17: Ψ .update(S′, < S′, c >);
18: else break;
19: output the communities of keyword sets in Φl−1;

Example 4 Consider the graph in Fig. 4a and its index in
Fig. 5b. Let q = A, k = 1 and S = {w, x, y}. By Algo-
rithm 5, we first find 3 root nodes r1, r2 and r3. In the first
while loop, we find 2 qualified keyword sets {x} and {y}with
core numbers being 3 and 1. By Lemma 2, we only need to
verify the new candidate keyword set {x, y} under node r3.

6.1.2 Inc-T algorithm

We begin with a lemma which is used in Inc-T.

Lemma 4 Given two keyword sets S1 and S2, if Gk[S1] and
Gk[S2] exist, we have

Gk[S1 ∪ S2] ⊆ Gk[S1] ∩ Gk[S2]. (2)

This lemma implies, if S′ is generated from S1 and S2, we
can findGk[S′] fromGk[S1]∩Gk[S2] directly. Also, as each
vertex of Gk[S1] ∩ Gk[S2] contains both S1 and S2, we do
not need to consider the keyword constraint again.

Based onLemma4,we introduce a newalgorithm Inc-T.
Different from Inc-S, Inc-TmaintainsGk[S′] rather than
coreG [Gk[S′]] for each qualified keyword set S′. As we
will demonstrate later,Inc-T is more effective for shrinking
the subgraphs containing the ACs, and thus more efficient.
As a trade-off for better efficiency, Inc-T consumes more
memory as it needs to store a list of subgraph Gk[S′] in
memory.

Algorithm 6 presents the steps of Inc-T. We first apply
core-locating to find the k-ĉore containing q from the

Algorithm 6 Query algorithm: Inc-T
1: function query(G, root , q, k, S)
2: find the k-ĉore, which contains q;
3: initialize l=0, Ψ using S;
4: while true do
5: l ← l + 1; Φl ← ∅;
6: for each < S′, ̂G > ∈ Ψ do
7: find G[S′] from ̂G;
8: if G[S′] is not pruned by Lemma 3 then
9: find Gk [S′] from G[S′];
10: if Gk [S′] exists then
11: Φl .add(< S′,Gk [S′] >);
12: if Φl = ∅ then
13: Ψ ← geneCand(Φl);
14: for each S′ ∈ Ψ do
15: if S′ is generated from S1 and S2 then
16: ̂G ← Gk [S1] ∩ Gk [S2];
17: Ψl .update(S′,< S′, ̂G >);
18: else break;
19: output the communities of keyword sets in Φl−1;

CL-tree (line 2). Then, we set l = 0, indicating the sizes of
current keyword sets, and initialize a set Ψ of < S′, ̂G >

pairs, where S′ is a set containing a keyword from S and ̂G is
the k-ĉore. The while loop (lines 4–18) is similar with that of
Inc-S. The main differences are that: (1) for each qualified
keyword set S′, Inc-T keeps Gk[S′] in memory (line 11);
and (2) for each candidate keyword set S′ generated from S1
and S2, Inc-T finds Gk[S′] from Gk[S1] ∩ Gk[S2] directly
without further keyword verification (lines 6–9, 16).

Example 5 Continue the graph and query (q = A, k =
1, S = {w, x, y}) in Example 4. By Inc-T, we first find
G1[{x}] and G1[{y}], whose vertex sets are {A, B,C, D}
and {A,C, D, E, F,G}. Then to find G1[{x, y}], we only
need to search it from the subgraph, induced by the vertex
set {A,C, D}.

6.2 The decremental algorithm

The decremental algorithm, denoted by Dec, differs from
incremental algorithms on both the generation and verifica-
tion of candidate keyword sets.

1. Generation of candidate keyword sets Dec exploits
the key observation that, if S′ (S′ ⊆ S) is a qualified keyword
set, then there are at least k of q’s neighbors containing set
S′. This is because every vertex in Gk[S′] must has degree
at least k. This observation implies, we can generate all the
candidate keyword sets directly by using the query vertex q
and q’s neighbors, without touching other vertices.

Specifically, we consider q and q’s neighbor vertices. For
each vertex v, we only select the keywords, which are con-
tained by S and at least k of its neighbors. Then we use
these selected keywords to form an itemset, in which each
item is a keyword. After this step, we obtain a list of item-
sets. Then we apply the well studied frequent pattern mining

123

814 Y. Fang et al.

Q:{v,x,y,z}

A:{v,x,y,z}

B:{v,x}

D:{x,y,z}

E:{w,x,y,z}

C:{v,y}

F:{v, w}

(a) (b)

k=3

Set Keyword sets
Ψ1 {v},{x},{y},{z}
Ψ2 {x,y},{x,z},{y,z}
Ψ3 {x,y,z}

Fig. 7 An example of candidate generation. a a query vertex, b candi-
dates

algorithms (e.g., Apriori [15] and FP-Growth [16]) to find the
frequent keyword combinations, each of which is a candidate
keyword set. Since our goal is to generate keyword combi-
nations shared by at least k neighbors, we set the minimum
support as k. In this paper, we use thewell-knownFP-Growth
algorithm [16].

Example 6 Consider a query vertex Q (k = 3, S =
{v, x, y, z}) with 6 neighbors in Fig. 7a, where the selected
keywords of each vertex are listed in curly braces. By FP-
Growth, 8 candidate keyword sets are generated, as shown
in Fig. 7b. Ψi denotes the sets having i keywords.

2. Verification of candidate keyword sets As candidates
can be obtained using S and q’s neighbors directly, we can
verify them either incrementally as that in Inc-S, or in
a decremental manner (larger candidate keyword sets first
and smaller candidate keyword sets later). In this paper, we
choose the latter manner. The rationale behind is that, for any
two keyword sets S1 ⊆ S2, the number of vertices containing
S2 is usually smaller than that of S1, which implies S2 can be
verified more efficiently than S1. During the verification pro-
cess, once finding an AC for a candidate keyword set, Dec
does not need to verify smaller candidate keyword sets. As
a result, compared to the incremental algorithms, Dec can
save the cost of verifying smaller candidate keywords. Thus,
it may be faster practically.

Algorithm 7 Query algorithm: Dec
1: function query(G, root , q, k, S)
2: generate Ψ1, Ψ2, · · · , Ψh using S and q’s neighbors;
3: find the subtree root node rk ;
4: create R1, R2, · · · , Rh′ by using subtree rooted at rk ;
5: l ← h; Q ← ∅;
6: ̂R ← Rh ∪ · · · ∪ Rh′ ;
7: while l ≥ 1 do
8: for each S′ ∈ Ψl do
9: find G[S′] from the subgraph induced on ̂R;
10: find Gk [S′] from G[S′];
11: if Gk [S′] exists then Q.add(Gk [S′]);
12: if Q=∅ then
13: l ← l − 1;
14: ̂R ← ̂R ∪ Rl ;
15: else break;
16: output communities in Q;

Based on the above discussions, we design Dec as shown
in Algorithm 7. We first generate candidate keyword sets
using S and q’s neighbors by FP-Growth algorithm (line 2).
Then,we applycore-locating to find the root (with core
number k) of the subtree from CL-tree, whose correspond-
ing k-ĉore contains q (line 3). Next, we traverse the subtree
rooted at rk and find vertices which share keywords with q
(line 4). Ri denote the sets of vertices sharing i keywordswith
q. Then, we initialize l as h (line 5), as we verify keyword
sets with the largest size h first. We maintain a set ̂R dynami-
cally, which contains vertices sharing at least l keywordswith
q (line 6). In the while loop, we examine candidate keyword
sets in the decremental manner. For each candidate S′ ∈ Ψl ,
we first try to find G[S′], then find Gk[S′], and put Gk[S′]
into Q if it exists (lines 8–11). Finally, if we have found
at least one qualified community, we stop at the end of this
loop and output Q; otherwise, we examine smaller candidate
keyword sets in next loop.

7 Index maintenance

In practice, the graphs are continuously evolving [1,33]. Thus
keywords and edges of graphs are often frequently updated.
Clearly, when the graph is updated, both the CL-tree index
and theACQquery results also need to beupdated.A straight-
forward method is to rebuild the index from scratch when an
update is made. However, this method is very inefficient,
especially when the updates are frequent. To alleviate this
issue, we study how to dynamically maintain the CL-tree
index efficiently and propose algorithms for maintaining the
CL-tree without rebuilding the CL-tree from scratch.

Wefirst present how to handle keyword update in Sect. 7.1.
Then,we discuss themaintenance ofCL-tree for the insertion
and deletion of an edge in Sects. 7.2 and 7.3. Notice that
the insertion or deletion of a new vertex can be regarded as
sequentially inserting or deleting a list of edges.

7.1 Keyword update

The update for keyword update, i.e., inserting or deleting
a keyword from a vertex’s keyword set, is easy to be han-
dled, since we can simply find the CL-tree node containing
the vertex and update its invertedList . Recall that in the
advanced method (Sect. 5.2.2), we have built a vertex-
node map, where each vertex is mapped to a CL-tree node.
Note that we can build such amap by traversing the tree if we
use basic. To insert a new keyword for a vertex v, we can
first locate the CL-tree node, p, containing v by the vertex-
node map, and then insert the keyword and vertex ID into
p.invertedList . To remove a keyword of a vertex, we can
have a similar process on the CL-tree.

123

Effective and efficient attributed community search 815

C
D

A

F
E

G

B

H

J
K

L

I

M

N

0

2 1

3
ABCD

HEFG

N

M

3
IJKL

(a)

0

1

2

3

ABCD

EFG

HM

N

C
D

A

F
E

G

B

H

J

K

L

I

M

N

3
IJKLp1 p2

p3

p4

p5

(b)

Fig. 8 The core number and connectivity change. a core number, b
connectivity

7.2 Edge insertion

For the update of edge, i.e, inserting (deleting) an edge, it is
not straightforward update the CL-tree accordingly. This is
because, the insertion (deletion) of a single edge may trigger
updates in several CL-tree nodes as well as their structures.
We illustrate this by Example 7.

Example 7 Consider the graph in Fig. 6. If we insert an edge
(H, G) as shown in Fig. 8a, the core number of vertex H
increases to 2 and we need to move it down to a node in
the lower level. If we insert an edge (G, I), the connectiv-
ity of some vertices changes as shown in Fig. 8b and the
corresponding subtrees are merged as a new one.

To maintain the CL-tree for inserting an edge, we propose
an algorithm called insertEdge. Themain idea is that, we
first find vertices whose core numbers change, then change
their positions in the CL-tree, and merge some subtrees. Let
V+ be the set of vertices whose core numbers increase after
inserting an edge (u, v). We summarize the main steps of
insertEdge as follows.

• Step 1: Compute V+;
• Step 2: Move down vertices of V+;
• Step 3: Merge subtrees.

We now elaborate these steps one by one.
Step 1: Compute V+ Inserting an edge only affects the

core numbers of a small number of vertices [26,36]. Below,
we first introduce a definition, a theorem, and a lemma pro-
posed in a prior work [26].

Definition 5 [[26]] Given a graph G and a vertex v, the
induced core subgraph of v, denoted as Gv , is a connected
subgraph containing v and the core numbers of all vertices
in Gv equal to coreG [v].

1

2 3

4

9

6
5

7

8

10

11 13

1415

12
16 18

19
17

22

23

21 20

Nodes Vertices
r1 1,2,8,9,10,11,16,17,18,23
r2 12,13,14,15
r3 19,20,21,22
r4 3,4,5,6,7

2

433

2

3

4

r1

r2 r3 r4

r1

r2

r3

Nodes Vertices
r1 1,2,9,10,16,17,18
r2 8,11,12,13,14,15,19,20,21,22,23
r3 3,4,5,6,7

(a)

(c) (b)

Fig. 9 An example of the tree index update. a The original graph, b
before the edge insertion, c after the edge insertion

Notice that, the sets of vertices in Gu (Gv) are actually
subsets of vertices in pu .vertex Set (pv.vertex Set), where
pu, pv denote the nodes that contain u, v.

Theorem 1 [k-core update [26]] Given a graph G and two
vertices u and v. After inserting or deleting an edge (u,v) in
G, we have that,

• If coreG [u] > coreG [v], only the core numbers of ver-
tices in Gv may need to be updated.

• If coreG [u] < coreG [v], only the core numbers of ver-
tices in Gu may need to be updated.

• If coreG [u] = coreG [v], only the core numbers of ver-
tices in the union of Gu and Gv , i.e., Gu∪v may need to
be updated.

Lemma 5 [[26]] After inserting (deleting) an edge, the core
number of any vertex increases (decreases) by at most 1.

By above theorem and lemma,we can conclude that only a
small number of vertices need to change their core numbers.
In specific, we can first find node pu (pv) and then compute
the vertex set V+ in which vertices’s core numbers increase
by 1 using the algorithm in [26].

Step 2: Move down vertices of V+ Let p be the node
containing V+ and c =min{coreG [u], coreG [v]}). Since
the core numbers of vertices in V+ increase by 1 (from c to
c+1), we need move them down to nodes in the lower level.
During the moving down process, we may also need to reor-
ganize p’s child nodes. Let us illustrate this by Example 8.

Example 8 Consider a graph in Fig. 9a and its CL-tree in
Fig. 9b. Let us insert an new edge (8, 11). We first get
V+ ={8, 11, 23} and c = 2. Next, we move them down

123

816 Y. Fang et al.

from r1 to r3. Besides, we have to merge r2 into r3 and place
r4 as r3’s child node, since their connectivity changes after
the insertion. The updated CL-tree is depicted in Fig. 9c.

Clearly, moving down vertices of V+ from p to p’s child
node (denoted by p′) may change the connectivity of p’s
child nodes. Consider a specific vertex a ∈ V+ and we ini-
tialize two empty sets B1 and B2. For each of a’s neighbor b
whose coreG [b] > c, we first find the node pb containing b,
and then trace it up from pb along the CL-tree until a child
node of p, denoted by ob. If ob has a core number of c + 1,
we put it into B1; Otherwise, we put it into B2. Then, after
moving down vertices of V+, nodes in B1 should be merged
into p′ and nodes in B2 will be child nodes of p′.

Algorithm 8 move down vertices: moveDown
1: function moveDown(V+

, p)
2: if V+=∅ then return p;
3: P ← ∅;
4: update p using V+;
5: for each a ∈ V+ do
6: for each b ∈ a’s neighbor vertices do
7: if coreG [b] > c and b /∈ V+ then
8: locate node pb;
9: ob ← TRACE(pb), and update P;
10: pmax ← a node of P , which has a core number of c+1 and its

vertex Set is the largest among all nodes of P;
11: if pmax = null then
12: create a new node p′;
13: update p′;
14: add P to childList of p′;
15: else
16: add V+ to pmax .vertex Set ;
17: for each pi ∈ P do
18: if pi .coreNum = c + 1 then
19: merge pi to pmax ;
20: else
21: add pi to childList of pmax ;
22: p′ ← pmax ;
23: update vertex-node map;
24: if p.vertex Set = ∅ then
25: add {p.childList − P} to childList of p. f ather ;
26: return p′;

Algorithm 8 presents moveDown. If V+ = ∅, we first
initialize a node set P (line 3). Then, we remove V+ from
p.vertex Set and update p.invertedList (line 4). ∀a ∈ V+,
we enumerate a’s neighbor b whose coreG [b] > c, locate
pb, trace up from pb to find pb’s ancestor node ob which is a
child node of p, and put ob into P (lines 5–9). Let the node
which has the largest size with core number being c+1 in P
be pmax (line 10). Next, if pmax = null, we need to create a
new child node of p (lines 11–14); otherwise, we merge and
reorganize p’s child nodes (lines 15–22). Finally, we return
node p′ (line 26), which will be used later.

Step 3: Merge subtrees Recall in Fig. 8b, after inserting
(G, I), the corresponding subtrees, which correspond to the

k-ĉores containingG and I are merged into one subtree. The
process of merging subtrees starts from the tree nodes which
contain G and I , and ends at their common ancestor node.
Next, we show two interesting lemmas.

Lemma 6 After inserting an edge, the maximum number of
disconnected k-ĉores which need to be merged is 2.

Lemma 7 In the process of merging subtrees, the maximum
number of nodes which need to be merged in each level is 2.

By Lemmas 6 and 7, we conclude that, to merge the sub-
trees, we first trace two paths starting from pu and pv until
their common ancestor in the CL-tree, and then merge pairs
of nodes on the paths, if their core numbers are the same.

Algorithm 9 presents insertEdge. We first compute
V+, and invokemoveDown to update these nodes in CL-tree
(lines 2–16). Next, if p′

u and p′
v belong to two disconnected

k-ĉores, we need to merge the subtrees (lines 17–19). In
detail, we first trace two paths starting from p′

u and p′
v up

until one common ancestor. Then, for each pair of nodes on
the paths, if their core numbers are equal, we merge them as
a single node. Finally, the tree index is updated. Note that
during the above process, the elements of nodes and vertex-
node map are also updated. Clearly, its time complexity is
O(m) since in the worst case inserting an edge will increase
the core numbers of all the vertices.

Algorithm 9 index update algorithm: insertEdge
1: function insertEdge(pu ,pv)

2: if pu .coreNum=pv.coreNum then
3: compute V+

1 in pu .vertex Set ;
4: p′

u ← movedown(V+
1 ,pu);

5: p′
v ← pv ;

6: if pu = pv then
7: compute V+

2 in pv.vertex Set ;
8: p′

v ← movedown(V+
2 ,pv);

9: else if pu .coreNum < pv.coreNum then
10: compute V+ in pu .vertex Set ;
11: p′

u ← movedown(V+
,pu);

12: p′
v ← pv ;

13: else
14: compute V+ in pv.vertex Set ;
15: p′

v ← movedown(V+
,pv);

16: p′
u ← pu ;

17: if p′
u and p′

v are in two disconnected k-ĉores then
18: trace paths from p′

u and p′
v up until a common ancestor;

19: merge pairs of nodes with the same core numbers on paths;

7.3 Edge deletion

Similar to the edge insertion, deleting an edge may trigger
the updates of CL-tree nodes as well as their structures. We
illustrate this by Example 9.

123

Effective and efficient attributed community search 817

p

p1

py

p2

x

y

Vertices Subtree roots
y p1
z p2

z

Fig. 10 Illustrating the vertex-tree map

Example 9 Consider the graph in Fig. 8. If we delete an edge
(H, G) of the graph in Fig. 6, the core number of vertex H
decreases to 1. Thus we need to create a new node with core
number being 1 and then move H up to the new node. If
we delete an edge (G, I), the connectivity of some vertices
changes as shown inFig. 6 and thus the corresponding subtree
has to be split to two new ones.

To maintain the CL-tree for deleting an edge, we propose an
algorithmcalleddeleteEdge. Let V− be the set of vertices
whose core numbers decrease after deleting an edge (u, v).
The main steps of deleteEdge are as follows.

• Step 1: Compute V−;
• Step 2: Split nodes in a path;
• Step 3: Move up vertices of V−.

We now elaborate these steps one by one.
Step 1: Compute V− By Lemma 5, the core numbers of

vertices in G decrease by at most 1 after deleting an edge.
We compute V− using the algorithm in [26].

Step 2: Split nodes in a path Similar to edge insertion,
the connectivity of vertices may change after deleting an
edge. Let p be the node containing vertex u if coreG [u] ≤
coreG [v]; or the node containing v if coreG [v] < coreG [u].
From Example 9, we conclude that after deleting an edge
(u, v), we may have to split p and its ancestor nodes. To
enable efficient splitting, we first build a vertex-tree map for
p. In this map, the key is a vertex vkey , which is a neighbor
of a vertex in p and is in a descendant node of p; the value of
vkey is a child node of p, whose subtree contains vkey . The
vertex-tree map can be built simply by traversing the subtree.
We illustrate the vertex-tree map via Example 10.

Example 10 Figure 10 depicts a subtree rooted at p. Suppose
p only has one vertex x which has two neighbors y and z.
Vertices y and z are in the descendant nodes of p. Then, in
the vertex-tree map, there are two keys y and z, and their
values are p1 and p2, respectively.

Next, we regroup vertices of p using the vertex-tree map.
Specifically, we consider each vertex a ∈ p.vertex Set . For
each neighbor b of a, if it has coreG [b] > coreG [a], we
locate the chid node of p which contains b using the vertex-
treemap. As a result, each vertex corresponds to a list of child

1

2

3

ABCD

EFG

H

N

3
IJKL

1
M

1

2

3

ABCD

EFG

H

N

3

IJKL

1
M

0 0

p1

p2p3

p4

p5

p6

1

2

3

ABCD

EFG

HM

N

3
IJKL

p1

p2p3

p4

p5

0

Fig. 11 The process of splitting nodes in a path

nodes of p. Then, we partition vertices of p into groups such
that:

• For each vertex a in a group g, there is at least another
vertex in g that is a neighbor of a or has the same corre-
sponding child node.

• If there are twogroups g1 and g2, then their corresponding
child nodes should be completely different.

Essentially, each group corresponds to a k-ĉore. Since
deleting an edge in a k-ĉore can result in at most two k-ĉore,
vertices in p can be partitioned into at most two groups. After
regrouping, we can split the nodes in the path from p to all
its ancestor nodes as follows:

• If there is only one group, we do not split p; otherwise we
split p into two nodes, each of which contains a group of
vertices and links to a set of child nodes that its vertices
correspond to.

• If p remains unsplit, and each child node of p is still
linked to p, we stop; otherwise, we perform these two
steps for p’s father node.

Clearly, the splitting process is recursively performed on
p’s ancestor nodes and thus we split nodes in a path. We give
Example 11 to illustrate the process.

Example 11 Consider the graph inFig. 8b.We show the split-
ting process for deleting (G, I) in Fig. 11. We first locate
node p3 containing G, regroup vertices of p3 and find that
p2 cannot be linked as a child node p3. So we link p2 to p3’s
father node p4 and perform splitting on p4. After regrouping
vertices in p4, we split it to two nodes because p2 and p3
are, respectively, shared by vertices H and M . Now since
each child node of p5 is still linked to it, we stop the splitting
process.

Step 3: Move up vertices of V− After computing V−
and splitting some nodes in CL-tree, we move up vertices of
V− to an upper level. We denote the algorithm of performing
moving up by moveUp.

We outline moveUp in Algorithm 10. We firs update p by
removing V− from its vertex set and updating its inverted list

123

818 Y. Fang et al.

(line 3). Then, if the core number of p. f ather is c–1, we add
V− to it; otherwise, we create a new node and add it to the
tree (lines 4–9). Next, we collect the remaining vertices of p
in set , regroup them and split nodes and update the vertex-
node map (lines 10–12). We also need to update childList
and invertedList of p. f ather (lines 14–15). If there exists
child nodes that are unconsidered in line 11, we re-link them
to p. f ather because these nodes are connected to vertices
of V− (line 16).

Algorithm 10 move up vertices: moveUp
1: function moveUp(V−

, p)
2: if V−=∅ then return ;
3: update p;
4: if (p. f ather).coreNum = c–1 then
5: add V− to p. f ather ;
6: else
7: create a new node newFather ;
8: add V− to newFather ;
9: add newFather to the tree;
10: set ← p.vertex Set ;
11: P ← regroup vertices of set and split node;
12: update vertex-node map;
13: link each pi ∈ P to p. f ather ;
14: update invertedList of p. f ather ;
15: P ′ ← child nodes unconsidered in above step;
16: if P ′ = ∅ then re-link each p ∈ P ′ to p. f ather ;

We present deleteEdge in Algorithm 11. Similar to
insertEdge, we have three cases to be handled sepa-
rately. In these cases, we first compute V− (lines 3, 7, 11).
Then we split the nodes and get the updated node(s) p′

v

or p′
u or both p′

u and p′
v (lines 4, 8, 12). Next we apply

moveUp to move up vertices of V− (lines 5, 9, 13). In
pu .coreNum = pv.coreNum case, if vertices of V− belong
to two disconnected k-ĉores, we separate V− to two sets
and invoke moveUp accordingly (lines 14–16). Similar to
insertEdge, its time complexity is O(m), but it runs fast
practically.

8 The ACQ-A and ACQ-M problems

In this section, we introduce two problems related to the
ACQ problem, namely Approximate ACQ problem (or ACQ-
A) and Multiple-vertex ACQ problem (or ACQ-M). We also
develop the query algorithms based on the CL-tree.

8.1 The ACQ-A problem

We first present an approximation version of the ACQ query,
denoted by Problem 2. In Problem 2, vertices of an AC do
not need to exactly share the same keywords in S; instead,
they just need to share a predefined percentage of keywords

Algorithm 11 index algorithm: deleteEdge
1: function deleteEdge(pu , pv)

2: if pu .coreNum > pv.coreNum then
3: compute V− in pv.vertex Set ;
4: p′

v ← split p and its ancestor nodes;
5: moveUp(V−

, p′
v);

6: else if pu .coreNum < pv.coreNum then
7: compute V− in pu .vertex Set ;
8: p′

u ← split p and its ancestor nodes;
9: moveUp(V−

, p′
u);

10: else
11: compute V− in pu .vertex Set ;
12: p′

u, p
′
v ← split p and its ancestor nodes;

13: if p′
u = p′

v then moveUp(V−
, p′

u);
14: else
15: Vu−, Vv

− ← separate V−;
16: moveUp(Vu−

,p′
u); moveUp(Vv

−
,p′

v);

in S. Thus, the keyword cohesiveness is relaxed. This could
be useful for graphs if the keyword information of vertices
is weak.

Problem 2 (ACQ-A) Given a graph G, a positive integer k,
a vertex q ∈ V , a predefined keyword set S, and a threshold
θ ∈[0,1], return a subgraph Gq satisfying properties:

• Connectivity Gq ⊆ G is connected and q ∈ Gq ;
• Structure cohesiveness ∀v ∈ Gq , degGq (v) ≥ k;
• Keyword cohesiveness ∀v ∈ Gq , it has at least |S| × θ

keywords in S.
• Maximal structure There is no other community Gq

′,
which satisfies above properties with L(Gq

′, S) =
L(Gq , S), and Gq ⊂ Gq

′.

We illustrate Problem 2 using Example 12.

Example 12 In Fig. 4a, let q = A and k = 2. If S =
{x, y}, θ =50%, ACQ-A will return the subgraph induced
by the vertex set {A, B,C, D, E} as the target AC.

In line with Problem 1, we first introduce the basic
solutions without index, which are extended naturally from
basic-g andbasic-w, and are denotedbybasic-g-v1
and basic-w-v1, respectively. Their detailed algorithms
are presented in “Appendix 3”. We also propose an efficient
query algorithm SWT, based on the CL-tree index. Algo-
rithm 12 presents SWT. We first apply core-locating to
find node rk , whose corresponding k-ĉore contains q, from
CL-tree (line 1). Then we traverse the subtree rooted at rk ,
and collect a set V ′ of vertices containing at least |S| × θ

keywords by applying keyword-checking. Next, we find
Gk[S] from the subgraph induced by vertices in V ′ (line 3).
Finally, we output Gk[S] as the target AC, if it exists (line
4). Clearly, the time complexities of all these algorithms are
O(m + n · l).

123

Effective and efficient attributed community search 819

Algorithm 12 Query algorithm: SWT
1: function query(G, root , q, k, S)
2: find the node rk from the CL-tree index;
3: traverse the subtree rooted at rk and collect a set V ′ of vertices

containing at least |S| × θ keywords using the inverted lists;
4: find Gk [S] from the subgraph induced by V ′;
5: output Gk [S] as the target AC if it exists.

8.2 The ACQ-M problem

The ACQ-M problem generalizes the ACQ problem for sup-
porting a set Q of vertices, and it finds the ACs containing
all the vertices in Q. We give its definition as follows.

Problem 3 Given a graphG, a positive integer k, a vertex set
Q ⊆ V , and a predefined keyword set S, return a subgraph
GQ , the following properties hold:

• Connectivity GQ ⊆ G is connected and Q ⊂ GQ ;
• Structure cohesiveness ∀v ∈ GQ , degGQ (v) ≥ k;
• Keyword cohesiveness The size of L(GQ, S) is maxi-
mal, where L(GQ, S) = ∩v∈GQ (W (v) ∩ S) is the set of
keywords shared in S by all vertices of GQ .

• Maximal structure There is no other community GQ
′,

which satisfies above properties with L(GQ
′, S) =

L(GQ, S), and GQ ⊂ GQ
′.

We illustrate Problem 3 via Example 13.

Example 13 In Fig. 4a, let Q = {A,C} and k = 2. If S =
{w, x, y, z}, then ACQ-M returns the subgraph induced by
the vertex set {A,C, D} whose shared keyword set is {x, y}.

To answer the query in Problem 3, we first find a set S′
of intersected keywords, which are contained by S and every
vertex in Q. Then, we randomly take a vertex q ∈ Q as the
query vertex. Finally, we find the target ACs by any of pre-
vious ACQ algorithms. Following the above idea, we extend
basic-g and basic-w and obtain two basic algorithms,
i.e., basic-g-v2 and basic-w-v2. We also extend Dec
and get an index-based algorithm MDec (see Algorithm 13),
which has the same complexity with Dec. Note that we do
not extend Inc-S and Inc-T, as they are slower than Dec.

Algorithm 13 Query algorithm: MDec
1: function query(G, root , Q, k, S)
2: S′ = (

⋂|Q|−1
i=0 W (qi)) ∩ S;

3: q ← randomly select a vertex from Q;
4: run Dec with q, k, and S′;
5: output target ACs which contain Q;

Table 3 Datasets used in our experiments

Dataset Vertices Edges kmax ̂d ̂l

Flickr 581,099 4,972,274 152 17.1 9.90

DBLP 977,288 3,432,273 118 7.02 11.8

Tencent 2,320,895 50,133,369 405 43.2 6.96

DBpedia 8,099,955 71,527,515 95 17.7 15.0

DFlickr 2,585,569 22,838,277 600 17.6 –

Youtube 1,881,147 4,571,023 55 4.9 –

9 Experiments

9.1 Setup

We consider six real datasets. The first four datasets (Flickr,
DBLP, Tencent, and DBpedia) are static graphs. For
Flickr4 [40], a vertex represents a user, and an edge denotes
a “follow” relationship between two users. For each vertex,
we use the 30 most frequent tags of its associated photos as
its keywords. For DBLP,5 a vertex denotes an author, and
an edge is a co-authorship relationship between two authors.
For each author, we use the 20 most frequent keywords from
the titles of her publications as her keywords. In the Ten-
cent graph provided by the KDD contest 2012,6 a vertex
is a person, an organization, or a microblog group. Each
edge denotes the friendship between two users. The key-
word set of each vertex is extracted from a user’s profile.
For the DBpedia,7 each vertex is an entity, and each edge is
the relationship between two entities. The keywords of each
entity are extracted by the Stanford Analyzer and Lemma-
tizer. Table 3 shows the numbers of vertices and edges, kmax

value, a vertex’s average degree ̂d, and its keyword set sizêl.
The remaining two dynamic datasets, i.e., DFlickr and

Youtube [28,29], are dynamic evolving graphs, which con-
tain the snapshots of graphs as the time goes on. Note that
these two datasets do not have keywords. Specifically, in
Youtube dataset, each vertex denotes a user and two users
are linked if one subscribes the other in Youtube. DFlickr
contains edges which are inserted and deleted during the
evolving process; while Youtube only has inserted edges as
the time goes on. In Table 3, the initial numbers of vertices
and edges in the first day of each dataset are reported. In the
next 100 days, for DFlickr, 10,301,741 edges were inserted
and 2,211,272 edges were deleted; for Youtube, 13,954,071
edges were inserted.

4 https://www.flickr.com/.
5 http://dblp.uni-trier.de/xml/.
6 http://www.kddcup2012.org/c/kddcup2012-track1.
7 http://dbpedia.org/datasets.

123

https://www.flickr.com/
http://dblp.uni-trier.de/xml/
http://www.kddcup2012.org/c/kddcup2012-track1
http://dbpedia.org/datasets

820 Y. Fang et al.

Table 4 The distribution of community size

Dataset [1,50] [51,100] [101,200] [201,400] ≥401

DBLP 31 12 10 18 229

Flickr 26 7 8 15 244

Tencent 2 3 0 4 291

DBpedia 12 3 0 0 285

To evaluate ACQ queries, we set the default value of k to
6. The input keyword set S is set to the whole set of key-
words contained by the query vertex. For each dataset, we
randomly select 300 query vertices with core numbers of 6
or more, which ensures that there is a k-core containing each
query vertex. In all the following figures of efficiency, we
report the average time cost of these queries. We report the
distribution of community size on each dataset. To make the
results more readable, we divide the range of community
sizes into 5 intervals and show the numbers of communities
in each interval in Table 4. We observe that more than 75%
of the communities have more than 400 members. Also, the
community sizes of larger datasets are generally larger.

To evaluate the index maintenance algorithms, we con-
sider all the six datasets. For the first four datasets, we
randomly select 1000 vertices and for each of them, we ran-
domly insert and delete one keyword to evaluate the perform
keyword update. Meanwhile, we randomly insert and delete
five groups of edges, each of which has 100 edges, and their
core numbers vary from 5 to 25. For each of the remaining
datasets (DFlickr and Youtube), we first take the snapshots
in 100 consecutive days, then divide them into five groups,
each of which are in a period of 20 consecutive days, and
finally we randomly select 200 records from each group as
test edges. We implement all the algorithms in Java, and run
experiments on a machine having a quad-core Intel 3.40GHz
processor, and 32GB of memory, with Ubuntu installed.

9.2 Results on effectiveness

9.2.1 ACQ effectiveness

We first define two measures, namely CMF and CPJ, for
evaluating the keyword cohesiveness of the communities.
Let C(q) = {C1, C2, . . . , CL} be the set of L communities
returned by an algorithm for a query vertex q ∈ V (Note that
S = W (q)).

• Community member frequency (CMF): this is inspired
by the classical document frequencymeasure. Consider a
keyword x of q’s keyword setW (q). If x appears in most
of the vertices (or members) of a community Ci , then we
regardCi to be highly cohesive. The CMFuses the occur-
rence frequencies of q’s keywords in Ci to determine the

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

the nubmer of shared
 keywords

C
M

F

Flickr
DBLP

Tencent
DBpedia

(a)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

the nubmer of shared
keywords

C
P

J

Flickr
DBLP

Tencent
DBpedia

(b)

Fig. 12 AC-label length. a CMF, b CPJ

degree of cohesiveness. Let fi,h be the number of vertices
of Ci whose keyword sets contain the h-th keyword of
W (q). Then, fi,h

|Ci | is the relative occurrence frequency of
this keyword in Ci . The CMF is the average of this value
over all keywords inW (q), and all communities inC(q):

CMF(C(q)) = 1

L · |W (q)|
L

∑

i=1

|W (q)|
∑

h=1

fi,h
|Ci | (3)

Notice that CMF(C(q)) ranges from 0 to 1. The higher
its value, the more cohesive is a community.

• Community pairwise Jaccard (CPJ): this is based on
the similarity between the keyword sets of any pair of
vertices of community Ci . We adopt the Jaccard similar-
ity, which is commonly used in the IR literature. Let Ci, j

be the j-th vertex ofCi . The CPJ is then the average simi-
larity over all pairs of vertices ofCi , and all communities
of C(q):

CPJ(C(q))

= 1

L
L

∑

i=1

⎡

⎣

1

|Ci |2
|Ci |
∑

j=1

|Ci |
∑

k=1

∣

∣W (Ci, j) ∩ W (Ci,k)
∣

∣

∣

∣W (Ci, j) ∪ W (Ci,k)
∣

∣

⎤

⎦

(4)

The CPJ(C(q)) value has a range of 0 and 1. A higher
value of CPJ(C(q)) implies better cohesiveness.

1. Effect of common keywords We examine the impact
of the AC-label length (i.e., the number of keywords shared
by all the vertices of the AC) on keyword cohesiveness. We
collect ACs containing one to five keywords, and then group
the ACs according to their AC-label lengths. The average
CMF and CPJ value of each group is shown in Fig. 12. For all
the datasets, when the AC-label lengths increase, both CMJ
and CPJ value rises. This justifies the use of the maximal
AC-label length as the criterion of returning an AC in our
ACQ Problem.

2. Comparison with existing CD methods As men-
tioned ahead, the existing CD methods for attributed graph
can be adapted for community search. We choose to adapt
CODICIL [34] for comparison. The main reasons are: (1)

123

Effective and efficient attributed community search 821

Fig. 13 Comparing with community detection method. a Keyword
(CMF),bKeyword (CPJ), cStructure (Avg. degree),dStructure (degree
≥ 6)

it has been tested on the ever reported largest attributed
graph (vertex number:3.6M); (2) it identifies communities
of comparable or superior quality than those of many exist-
ing methods like [30,44]; and (3) it runs faster than many
existing methods. Since CODICIL needs users to specify
the number of clusters expected, we set the numbers as 1K,
5K, 10K, 50K and 100K. The corresponding adapted algo-
rithms are named as Cod1K, . . ., Cod100K, respectively.
Other parameter settings are the same as those in [34]. We
run these algorithms offline to obtain the communities. Given
a query vertex q, they return communities containing q as the
results.

We consider both keyword and structure for evaluating
community quality. (1) Keyword: Fig. 13a, b show that gen-
erally ACQ (implemented by Dec) performs the best in terms
of CMF and CPJ. Note that Cod100K has the highest CMF
value on Flickr dataset. This is because when the number of
clusters is set as 100K, each community only has 5.8 ver-
tices, which means that almost all the vertices are neighbors
of query vertex q, resulting in higher CMF values. (2) Struc-
ture: As CODICIL has no guarantee on vertices’ minimum
degrees, it is unfair to compare them using this metric. We
intuitively compare their structure cohesiveness by reporting
the average degree of the vertices in the communities and the
percentage of vertices having degrees of 6 or more.When the
number of clusters in CODICIL is too large or too small, the
structure cohesiveness becomes weak, as shown in Fig. 13c,
d. ACQ always performs better than CODICIL, even when
its number of cluster is well set (e.g., Cod10K and Cod50K
on DBLP dataset).

3. Comparison with existing CS methods The existing
methods mainly focus on non-attributed graphs. We imple-
ment two state-of-the-artmethods:Global [38] andLocal
[5]. Both of them use the metric minimum degree, we thus
focus on the keyword cohesiveness. Figure 14 shows the

Fig. 14 Comparing with community search methods. a CMF, b CPJ

Jiawei Han

Xifeng Yan

Philip S. YuYizhou Sun

Tianyi Wu

Jiawei Han

Jeffrey Xu Yu

Philip S. YuJianyong Wang

Jian Pei

Guozhu Dong

(a) (b)

Fig. 15 Jiawei Han’s ACs. a AC-label: {analysis, data, information,
network}, b AC-label: {mine, data, pattern, database}

10 20 30
0

0.2

0.4

0.6

0.8

1

M
F

Cod50K
Global
Local
ACQ

10 20 30
0

0.2

0.4

0.6

0.8

1

M
F

Cod50K
Global
Local
ACQ

(a) (b)

Fig. 16 Frequency distribution of keywords. a Jim Gray, b Jiawei Han

CMF and CPJ values on four datasets. We can see that the
keyword cohesiveness of ACQ is superior to both Global
and Local, because ACQ considers vertex keywords, while
Global and Local do not.

9.2.2 A case study

We next perform a case study on the DBLP dataset, in which
we consider two renowned researchers in database and data
mining: Jim Gray and Jiawei Han. We use k = 4 here. We
use Cod50K to represent CODICIL for further analysis. We
mainly consider the input query keyword set S, keywords
and sizes of communities.

1. Effect of S Figure 15 shows two ACs of Jiawei, where
the query keyword set S are set as {analysis, mine, data,
information, network} and {mine, data, pattern, database},
respectively. These two groups of Jiawei’s collaborators are
involved in graph analysis (Fig. 15a) and pattern mining
(Fig. 15b). Although these researchers all have close co-
author relationship with Jiawei, the use of the input keyword
set S enables the identification of communities with differ-
ent research themes. For Jim, we can obtain similar results
as discussed in Sect. 1 (Fig. 2). While for CODICIL, it is not
clear how to consider the keyword set S, and we thus do not
show the results.

123

822 Y. Fang et al.

Table 5 # distinct keywords of communities

Researcher Cod50K Global Local ACQ

Jim Gray 134 139,881 60 44

Jiawei Han 140 139,881 58 54

2. Keyword analysis We analyze the frequency distribu-
tion of keywords in their communities. Specifically, given a
keyword wh , we define the member frequency (MF) of wh

as: MF(wh,C(q)) = 1
L

∑L
i=1

fi,h
|Ci | . The MF measures the

occurrence of a keyword in C(q). For each Cq generated by
an algorithm,we select 30 keywordswith the highestMF val-
ues. We report the MF of each keyword in descending order
of their MF values in Fig. 16. We see that ACQ has the high-
est MF values for the top 20 keywords. Thus, the keywords
associated with the communities generated by ACQ tend to
repeat among the community members.

The number of distinct keywords of ACQ communities is
also the fewest, as shown in Table 5. For example, the k-
ĉore returned by Global has over 139K distinct keywords,
about 2300 times more than that returned by ACQ (less than
60 keywords). While the semantics of the k-ĉore can be dif-
ficult to understand, the small number of distinct keywords
of AC makes it easier to understand why the community is
so formed. We further report the keywords with the 6 high-
est MF values in Jim and Jiawei’s communities in Tables 6
and 7. We can see that, words “sloan”, “digital”, “sky”, “sur-
vey”, and “sdss” reflect that the community is likely about
the SDSS project led by Jim. The top-6 keywords of Jiawei’s
AC are related to heterogenous networks. In contrast, the
keywords of Global and Local tend to be less related to
the query keyword set, and thus they cannot be used to char-
acterize the communities specifically related to Jiawei. Note
that the top-6 keywords of Global are the same for both
Jim and Jiawei, as they are in the same k-ĉore. Therefore,
ACQ performs better than other methods.

3. Effect of k on community size We vary the value of
k and report the average size of communities in Fig. 17.
We observe that the communities returned by Global are
extremely large (more than 105), which can make them dif-
ficult for a query user to analyze. The community size of
Local increases sharply when k = 8. In this situation,
Local returns the same community as Global. The size
of an AC is relatively insensitive to the change of k, as AC
contains around a hundred vertices for a wide range of k.

9.3 Results on efficiency

For each dataset, we randomly select 20, 40, 60 and 80%
of its vertices, and obtain four subgraphs induced by these
vertex sets. For each vertex, we randomly select 20, 40, 60
and 80% of its keywords, and obtain four keyword sets.

Table 6 Top-6 keywords (Jim Gray)

Algo. Keywords

Cod50K server, archive, sloan, digital, database

Global use, system, model, network, analysis, data

Local database, system, multipetabyte, data, lsst, story

ACQ sloan, digital, sky, data, sdss, server

Table 7 Top-6 keywords (Jiawei Han)

Algo. Keywords

Cod50K information, mine, data, cube, text, network

Global use, system, model, network, analysis, data

Local scalable, topical, text, phrase, corpus, mine

ACQ mine, analysis, data, information, network, heterog

4 5 6 7 8

102

104

106

k

co
m

m
un

ity
 s

iz
e

Global
Local
ACQ

4 5 6 7 8

102

104

106

k

co
m

m
un

ity
 s

iz
e

Global
Local
ACQ

(a) (b)

Fig. 17 Community size. a Jim Gray, b Jiawei Han

1. Index construction Figure 18a–d compare the effi-
ciency of Basic and Advanced. We study their main
parts, which build the tree without considering keywords.
We denote them by Basic- and Advanced-. Notice that
Advanced performs consistently faster, and scales better,
than Basic. When the subgraph size increases, the perfor-
mance gap between Advanced and Basic is enlarged.
Similar results can be observed between Advanced- and
Basic-. In addition, we also run the CDmethodCODICIL,
which takes 32min, 2min, 1day, and 3+days (we stop it after
running 3days) to cluster the vertices of Flickr, DBLP, Ten-
cent and DBpedia offline respectively.

2. Index maintenance We first evaluate the performance
of keyword update and the results show that the keyword
update is very fast. For example, we perform 1000 keyword
insertion and deletion on Flickr dataset and find that the pro-
posedmethod over 105 times faster than rebuilding the index.
Similar results are obtained on other three datasets.

Next, we show the performance of edge update on four
static datasets in Fig. 19a–h by varying k. In Fig. 19a–d), we
report the efficiency by separately performing edge inser-
tion and deletion. Clearly, insertEdge is 102 to 105 times
faster than rebuilding the index, and deleteEdge is also
around 102 times faster than rebuilding index. The main
reason is that inserting or deleting one edge only affects

123

Effective and efficient attributed community search 823

20% 40% 60% 80% 100%
0

2000

4000

6000

8000

10000

12000

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

20% 40% 60% 80% 100%
0

0.5

1

1.5

2

2.5

3
x 104

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

20% 40% 60% 80% 100%
0

1

2

3

4

x 105

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

20% 40% 60% 80% 100%
0

5

10

15

x 104

percentage of vertices

tim
e

(m
s)

Basic
Basic−
Advanced
Advanced−

(a) (b) (c) (d)

Fig. 18 Efficiency results of index construction. a Flickr (scalability), b DBLP (scalability), c Tencent (scalability), d DBpedia (scalability)

5 10 15 20 25

the core number of the vertex

100

102

104

tim
e

(m
s)

rebuild
insert
delete

5 10 15 20 25

the core number of the vertex

100

102

104

tim
e

(m
s)

rebuild
insert
delete

5 10 15 20 25

the core number of the vertex

100

101

102

103

104

tim
e

(m
s)

rebuild
insert
delete

5 10 15 20 25

the core number of the vertex

101

102

103

104

105

tim
e

(m
s)

rebuild
insert
delete

5 10 15 20 25

the core number of the vertex

101

102

103

104

tim
e

(m
s)

rebuild
update

5 10 15 20 25

the core number of the vertex

100

101

102

103

104

tim
e

(m
s)

rebuild
update

5 10 15 20 25

the core number of the vertex

102

103

104

tim
e

(m
s)

rebuild
update

5 10 15 20 25

the core number of the vertex

102

103

104

105

tim
e

(m
s)

rebuild
update

20 40 60 80 100

interval of the evolving graph (days)

102

103

104

tim
e

(m
s)

rebuild
update

20 40 60 80 100

interval of the evolving graph (days)

100

101

102

103

104

tim
e

(m
s)

rebuild
update

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 19 Efficiency results of index maintenance. a Flickr (index maint.), b DBLP (index maint.), c Tencent (index maint.), d DBpedia (index
maint.), e Flickr (index maint.), f DBLP (index maint.), g Tencent (index maint.), h DBpedia (index maint.), i DFlickr, j Youtube

a small proportion of CL-tree nodes and their connectiv-
ity. In other words, most of the nodes remain unaffected.
Moreover, deleteEdge is slower than insertEdge.
Recall that insertEdge needs to merge tree nodes, while
deleteEdge splits tree nodes, which generally involves
more cost. This is because, after deleting an edge (u, v),
we have to check whether they are still connected in a k-
ĉore, while inserting an edge does not need this. In addition,
we put all the insertion and deletion edges together and
report the efficiency by performing insertion and deletion
for these edge with a random order. We report the results in
Fig. 19e–h, where “update” denotes our algorithms including
both insertEdge and deleteEdge. We can see that the

index update algorithm is still much faster than rebuilding
the index.

The results on real dynamic graphs (DFlickr and Youtube
datasets) are shown in Fig. 19i–j. It is obvious to observe
that the results on real dynamic graphs are similar to those
on static graphs, and our proposed algorithms are at least two
orders of magnitude faster than rebuilding the CL-tree from
scratch. In summary, our proposed algorithms are efficient
for maintaining the index for dynamic graphs.

3. Efficiency of CS methods Figure 20a–d compares our
best algorithm Dec with existing CS methods. We see that
Local performs faster than Global for most cases. Also,
Dec, which uses the CL-tree index, is the fastest.

123

824 Y. Fang et al.

4 5 6 7 8
0

200

400

600

800

1000

k

tim
e

(m
s)

Global
Local
Dec

4 5 6 7 8
0

200

400

600

k

tim
e

(m
s)

Global
Local
Dec

4 5 6 7 8
0

2000

4000

6000

8000

k

tim
e

(m
s)

Global
Local
Dec

4 5 6 7 8
0

5000

10000

15000

k

tim
e

(m
s)

Global
Local
Dec

4 5 6 7 8

102

103

104

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

4 5 6 7 8

102

104

106

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

4 5 6 7 8
102

104

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

4 5 6 7 8
102

104

106

k

tim
e

(m
s)

basic−g
basic−w

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

50

100

150

200

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

500

1000

1500

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

1200

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

percentage of keywords

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

50

100

150

200

percentage of vertices

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

500

1000

1500

percentage of vertices

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

1200

percentage of vertices

tim
e

(m
s)

Inc−S
Inc−T
Dec

20% 40% 60% 80% 100%
0

200

400

600

800

1000

percentage of vertices

tim
e

(m
s)

Inc−S
Inc−T
Dec

1 3 5 7 9

102

103

104

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

1 3 5 7 9
101

102

103

104

105

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

1 3 5 7 9

102

104

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

1 3 5 7 9

102

104

106

the number of keywords in S

tim
e

(m
s)

basic−g
basic−w
Dec

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 20 Efficiency results of community search. a Flickr (efficiency),
b DBLP (efficiency), c Tencent (efficiency), d DBpedia (efficiency), e
Flickr (effect of k), fDBLP (effect of k), gTencent (effect of k),hDBpe-
dia (effect of k), i Flickr (keyword scalab.), j DBLP (keyword scalab.),

k Tencent (keyword scalab.), l DBpedia (keyword scalab.), m Flickr
(vertex scalab.), n DBLP (vertex scalab.), o Tencent (vertex scalab.), p
DBpedia (vertex scalab.), q Flickr (set S), r DBLP (set S), s Tencent
(set S), t DBpedia (set S)

4. Effect of k Figure 20e–h reports the effect of k. A
lower k renders a larger subgraph, so as the time costs,
for all the algorithms. Note that basic-g performs faster

than basic-w, but are slower than index-based algorithms.
Inc-T is 1 to 3 times faster than Inc-S, and Dec always
performs the fastest. The performance gaps decrease as k

123

Effective and efficient attributed community search 825

4 5 6 7 8

2

4

6

8

10
x 104

k

m
ax

im
um

 #
. o

f v
er

tic
es

Inc−S(Flickr)
Inc−T(Flickr)

Inc−S(DBLP)
Inc−T(DBLP)

4 5 6 7 8
3
4
5
6
7
8
9

10
x 104

k

m
ax

im
um

 #
. o

f v
er

tic
es

Inc−S(Tencent)
Inc−T(Tencent)

Inc−S(DBpedia)
Inc−T(DBpedia)

(a) (b)

Fig. 21 Comparing the size efficiency ofInc-S andInc-T. a Flickr,
b DBLP

4 5 6 7 8

103

104

k

tim
e

(m
s)

Inc−S
Inc−T

Inc−S*
Inc−T*

4 5 6 7 8

103

104

105

106

k

tim
e

(m
s)

Inc−S
Inc−T

Inc−S*
Inc−T*

(a) (b)

Fig. 22 Effect of InvertedList for Inc-S and Inc-T. a Flickr, b
DBLP

increases. Note that for CODICIL, its time cost of answer-
ing an online query is less than 1ms on each dataset, as it
pre-computes all the communities offline. In addition, we
compare the memory cost of Inc-S and Inc-T by count-
ing the maximum number of vertices considered by them
when answering the ACQ queries. The average results on
each dataset are shown in Fig. 21. We observe that, Inc-T
takes more space cost, but its space cost is less than twice of
Inc-S. The reason is that both of them need to find a set V
of vertices containing S in the k-ĉore in the very beginning,
althoughInc-Tmay keepmultiple communities inmemory
whose sizes are much smaller than |V |.

5. Scalability w.r.t. keyword Figure 20i–l examine scal-
ability over the fraction of keywords for each vertex. All the
vertices are considered. The algorithms run slower as more
keywords are involved. Dec performs the best.

6. Scalability w.r.t. vertex Figure 20m–p report the scal-
ability over different fraction of vertices. All the keywords
of vertices are considered. Again, Dec scales the best.

7. Effect of size of S For each query vertex, we randomly
select 1, 3, 5, 7 and 9 keywords to form the query keyword
set S. As Dec performs better than Inc-S and Inc-T, we
mainly compareDecwith thebaseline solutions. Figure 20q–
t show that the cost of all algorithms increase with the |S|.
Also,Dec is 1 to 3 order-of-magnitude faster thanbasic-g
and basic-w.

8. Effect of invertedList To test the importance of invert-
edList, we have implemented Inc-S* and Inc-T*, which
are respective variants of Inc-S and Inc-T, but without

the invertedList structure at each CL-tree node. Figure 22
shows the results on Flickr and DBLP datasets. We see that
Inc-S (Inc-T) is 1 to 2 order of magnitude faster than
Inc-S* (Inc-T*) in our experiments. The reason is that
the keyword-checking operation which uses invertedList is
frequently performed in the ACQ search. Thus, the invert-
edList greatly speeds up the ACQ search.

9. Non-attributed graphs We compare Dec and Local
on non-attributed graphs. This is done by running them on
our datasets, without using any of their associated keyword
sets. As shown in Fig. 23, for Flickr, Tencent and DBpedia,
Dec is consistently faster than Local. In Dec, cores are
organized into the CL-tree structure. Because the height of
the CL-tree is not very high (lower than 405 for all datasets),
the core-locating operation can be done quickly. For DBLP,
Dec is also faster than Local, except when k = 4. In this
dataset, a paper often has few (around 3 to 5) co-authors.
Since an author may be closely related to a few co-authors,
finding a 4-ĉore in Local can be done efficiently through
local expansion. Therefore, we conclude that Dec can also
be efficiently executed on non-attributed graphs.

10. Effect of θ in ACQ-A For each query vertex, we
randomly select 10 keywords to form set S, set θ as 0.2,
0.4 0.6, 0.8 and 1.0, and answer the query of ACQ-A using
basic-g-v1,basic-w-v1 andSWT. Figure 24a–d show
the efficiency results. We observe that SWT based on CL-tree
outperforms the basic solutions consistently.

11. Effect of |Q| in ACQ-M We randomly select five
groups of query sets by varying the size of Q from 2 to
6. Each group has 200 query sets. We run basic-g-v2,
basic-w-v2 and MDec with these five groups of query
sets, and report efficiency in Fig. 24e–h. We can observe
that, similar to the results of single query vertices, MDec
is at least two orders of magnitude faster than the baseline
solutions which do not use the CL-tree index.

10 Conclusions

An AC is a community that exhibits structure and keyword
cohesiveness. To facilitate ACQ evaluation, we develop the
CL-tree index and its query algorithms. We further propose
index maintenance algorithms for dynamic graphs. More-
over, we formally define ACQ-A and ACQ-M problems
and propose efficient query algorithms based on the CL-tree
index. Our experimental results on several dataseats show
that ACs are easier to interpret than those of existing CS and
CD methods, and they can be “personalized”. In addition,
our solutions are faster than existing CS methods.

In the future, we will study the use of other keyword cohe-
siveness measures in the ACQ definition. For example, we
can expect that each vertex of the returned community has a
semantic similarity with q to be at least β (β ≥ 0), a prede-

123

826 Y. Fang et al.

4 5 6 7 8
0

200

400

600

800

1000

k

tim
e

(m
s)

Local
Dec

4 5 6 7 8
0

50

100

150

200

k

tim
e

(m
s)

Local
Dec

4 5 6 7 8
0

2000

4000

6000

8000

k

tim
e

(m
s)

Local
Dec

4 5 6 7 80

5000

10000

15000

k

tim
e

(m
s)

Local
Dec

(a) (b) (c) (d)

Fig. 23 Results on non-attributed graphs. a Flickr, b DBLP, c Tencent, d DBpedia

0.2 0.4 0.6 0.8 1.0

the value of 3

102

tim
e

(m
s) basic-g-v1

basic-w-v1
SWT

0.2 0.4 0.6 0.8 1.0

the value of 3

101

102

103

tim
e

(m
s) basic-g-v1

basic-w-v1
SWT

0.2 0.4 0.6 0.8 1.0

the value of 3

102

103

104

tim
e

(m
s)

basic-g-v1
basic-w-v1
SWT

0.2 0.4 0.6 0.8 1.0

the value of 3

102

103

104

tim
e

(m
s)

basic-g-v1
basic-w-v1
SWT

2 3 4 5 6

the length of query set in Q

101

102

103

104

tim
e

(m
s)

basic-g-v2
basic-w-v2
MDec

2 3 4 5 6

the length of query set in Q

101

102

103

104

tim
e

(m
s)

basic-g-v2
basic-w-v2
MDec

2 3 4 5 6

the length of query set in Q

102

103

104

105
tim

e
(m

s)

basic-g-v2
basic-w-v2
MDec

2 3 4 5 6

the length of query set in Q

102

103

104

105

tim
e

(m
s) basic-g-v2

basic-w-v2
MDec

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 24 Efficiency results of ACQ-A and ACQ-M. a Flickr (ACQ-A), b DBLP (ACQ-A), c Tencent (ACQ-A), d DBpedia (ACQ-A), e Flickr
(ACQ-M), f DBLP (ACQ-M), g Tencent (ACQ-M), h DBpedia (ACQ-M)

fined threshold. We will also examine how the directions of
edges will affect the formation of an AC. For instance, we
can adopt D-core [14], a concept extended from k-core for
directed graphs, to measure the structure cohesiveness, and
develop algorithms similar to those of ACQ. It is of interest to
relax the structure cohesiveness (e.g., the proportion of ver-
tices in a community having degrees of k or more is at least
γ where γ > 0 is a parameter). Another interesting direction
is to combine ACQ-A and ACQ-M.Wewill study how graph
pattern matching techniques [8,41] can be extended to find
ACs. An potential direction is to study how to automatically
generate a meaningful graph pattern that well reflects a real
community.

A Proofs of lemmas

Lemma 1 (Anti-monotonicity) 1 Given a graph G, a vertex
q ∈ G and a set S of keywords, if there exists a subgraph

Gk[S], then there exists a subgraph Gk[S′] for any subset
S′ ⊆ S.

Proof Based on the definition ofGk [S], each vertex ofGk[S]
contains S. Consider a new keyword set S′ ⊆ S. We can
easily conclude that, each vertex of Gk[S] contains S′ as
well. Also, note that q ∈ Gk[S]. These two properties imply
that there exists one subgraph ofG, namelyGk[S], with core
number at least k, such that it contains q and every vertex of
it contains keyword set S′. It follows that there exists such a
subgraph with maximal size (i.e., Gk[S′]). ��
Proposition 1 For any keyword set S, and vertex q, if Gk[S]
exists, then Gk[S] ⊆ Gk[S′] for any subset S′ ⊆ S.

Proof Since Gk[S] contains vertex q and every vertex in
Gk[S] contains S′ (due to S′ ⊆ S), then Gk[S] ∪ Gk[S′]
also contains vertex q and every vertex in it contains S′. In
addition, the core numbers ofGk[S] andGk[S′] are at least k,
it follows that the core number ofGk[S]∪Gk[S′] is at least k.
Based on the definition ofGk[S′], we haveGk[S]∪Gk[S′] ⊆
Gk[S′]. It follows that Gk[S] ⊆ Gk[S′]. ��

123

Effective and efficient attributed community search 827

Lemma 2 Given two subgraphs Gk[S1] and Gk[S2] of a
graph G, for a new keyword set S′ generated from S1 and S2
(i.e., S′ = S1 ∪ S2), if Gk[S′] exists, then it must appear in a
k-ĉore with core number at least

max{coreG [Gk[S1]], coreG [Gk[S2]]}. (5)

Proof Since S′ is generated from S1 and S2, then S1 ⊆ S′
and S2 ⊆ S′. Based on Proposition 1, we have Gk[S′] ⊆
Gk[S1]. With such a containment relationship, it follows that
min{coreG [v]| v ∈ Gk[S1]} ≤ min{coreG [v]|v ∈ Gk[S′]}.
Hence, the core number of Gk[S′] is at least the core number
ofGk[S1]. Formally, coreG [Gk[S1]] ≤ coreG [Gk[S′]]. Sim-
ilarly, coreG [Gk[S2]] ≤ coreG [Gk[S′]]. It directly follows
the lemma. ��
Lemma 3 Given a connected graph G(V, E) with n = |V |
and m = |E |, if m − n < k2−k

2 − 1, there is no k-ĉore in G.

Proof From Definition 1, we can easily conclude that, for
any specific k, a k-ĉore has at least k+1 vertices. Since each
vertex in a specific k-ĉore has at least k edges, the minimum
number of edges in a k-ĉore is (k+1)k

2 .
Consider a connected graph, which contains a k-ĉore and

has theminimumnumber of edges, where the k-core contains
only k + 1 vertices and all the rest n − (k + 1) vertices are
connected with this k-ĉore. The total number of edges is

(k + 1)k

2
+ [n − (k + 1)] = m (6)

By simple transformation, we can conclude that, if m –
n < k2−k

2 − 1, there is no k-ĉore in G. ��
Lemma 4 Given two keyword sets S1 and S2, if Gk[S1] and
Gk[S2] exist, we have

Gk[S1 ∪ S2] ⊆ Gk[S1] ∩ Gk[S2]. (7)

Proof Based on Proposition 1 and S1 ⊆ S1 ∪ S2, we have
Gk[S1∪S2] ⊆ Gk[S1]. For the same reason,we haveGk[S1∪
S2] ⊆ Gk[S2]. It directly follows the lemma. ��
Lemma 6 After inserting an edge between two vertices, the
maximum number of disconnected k-ĉores which need to be
merged is 2.

Proof We prove the lemma by contradiction. Consider a k-
core with 3 disconnected k-ĉores G1, G2, and G3 and u ∈
G1, v ∈ G2, w ∈ G3. Let (u, v) be the newly inserted edge
that triggers mergingG1 andG2. SupposeG3 is also affected
by the insertion that needs to bemergedwithG1 andG2. Then
there must exist one connected path in the form (w, · · · , u,
· · · , v). Since (u, v) is the only inserted edge, to enables the
above path connected, we can claim thatw can already reach

to u or v in some paths before insert (u, v). That means G3 is
connected to G1 or G2 before the edge insertion and either
case is contradictory to the assumption. Hence, the lemma
holds. ��
Lemma 7 In the process of merging subtrees, the maximum
number of nodes which need to be merged in each level is 2.

Proof It can be proved in the similar way as that of
Lemma 6. ��

B Basic solutions for ACQ

Algorithms 14 presents basic-g. The input of basic-g
is a graph G, a query vertex q, an integer k, and a set S.
It first initializes a set, Ψ , of candidate keyword sets with
each being a keyword of S (line 2). Then, it finds the k-
ĉore, Ck , containing q from the graph G. In the loop (lines
4–11), it first initializes an empty setΦ (line 5) for collecting
all the qualified keyword sets. Then for each S′ ∈ Ψ , it
finds Gk[S′] from Ck by considering the keyword and degree
constraints, andput it intoΦ ifGk[S′] exists (lines 6–8).After
checking all the candidate keyword sets in Ψ , if there are at
least one qualified keyword sets in Φ, it generates a new set
Ψ of candidate keyword sets by calling geneCand(Φ) and
continues to checking larger candidate keyword sets in next
loop; otherwise, it stops and outputs the ACs (lines 9–11).

Algorithm 14 Basic solution: basic-g
1: function query(G, q, k, S)
2: init Ψ using S;
3: find the k-ĉore, Ck , containing q from G;
4: while true do
5: Φ ← ∅;
6: for each S′ ∈ Ψ do
7: find Gk [S′] from Ck ;
8: if Gk [S′] exists then Φ.add(S′);
9: if Φ = ∅ then Ψ ← geneCand(Φ);
10: else break;
11: output the communities of keyword sets in Φ;

The other basic algorithmbasic-w has the same steps of
basic-g, except that for each candidate keyword set S′, it
findsGk[S′] fromG, rather than Ck .We skip the pseudocodes
due to the space limitation.

C Basic algorithms for ACQ-A and ACQ-M

1. ACQ-A We show basic-g-v1 in Algorithm 15.
The other algorithm basic-w-v1 has the same steps of
basic-g-v1, except that it finds Gk[S] from G, rather
than Ck .

123

828 Y. Fang et al.

Algorithm 15 Query algorithm: basic-g-v1
1: function query(G, q, k, S)
2: find the k-ĉore, Ck , containing q from G;
3: collect a set V ′ of vertices containing at least |S| × θ keywords

from Ck ;
4: find Gk [S] from the subgraph induced by V ′;
5: output Gk [S] as the target AC.

2. ACQ-M We show basic-g-v2 in Algorithm 16.
The other algorithm basic-w-v2 has the same steps of
basic-g-v2, except that in line 4 of basic-g-v2, it
uses basic-w.

Algorithm 16 Query algorithm: basic-g-v2
1: function query(G, Q, k, S)
2: S′ = (

⋂|Q|−1
i=0 W (qi)) ∩ S;

3: q ← randomly select a vertex from Q;
4: run basic-g with q, k, and S′;
5: output target ACs which contain Q;

References

1. Bahmani, B., Kumar, R., Mahdian, M., Upfal, E.: Pagerank on an
evolving graph. In: KDD, pp. 24–32 (2012)

2. Barbieri, N., Bonchi, F., Galimberti, E., Gullo, F.: Efficient and
effective community search. DMKD 29(5), 1406–1433 (2015)

3. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decom-
position of networks. (2003). Preprint. arXiv:cs/0310049

4. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang W.: Online search of
overlapping communities. In: SIGMOD, pp. 277–288 (2013)

5. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communi-
ties in large graphs. In: SIGMOD, pp. 991–1002 (2014)

6. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding
top-k min-cost connected trees in databases. In: ICDE (2007)

7. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: K-core organi-
zation of complex networks. Phys. Rev. Lett. 96(4), 040601 (2006)

8. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pat-
tern matching: from intractable to polynomial time. Proc. VLDB
Endow. 3(1–2), 264–275 (2010)

9. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search
for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)

10. Fang, Y., Cheng, R., Luo, S., Hu, J., Huang, K.: C-explorer:
browsing communities in large graphs. PVLDB 10(12), 1885–1888
(2017)

11. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J., Hu, J.: Effective com-
munity search over large spatial graphs. PVLDB 10(6), 709–720
(2017)

12. Fang,Y., Zhang,H.,Ye,Y., Li,X.:Detecting hot topics from twitter:
a multiview approach. J. Inf. Sci. 40(5), 578–593 (2014)

13. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3),
75–174 (2010)

14. Giatsidis, C., Thilikos, D.M., Vazirgiannis,M.: D-cores:measuring
collaboration of directed graphs based on degeneracy. In: ICDM,
pp. 201–210. IEEE (2011)

15. Han, J., Kamber, M., Pei. J.: Data Mining: Concepts and Tech-
niques. Elsevier, Amsterdam (2011)

16. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: SIGMOD (2000)

17. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword
searches on graphs. In: SIGMOD (2007)

18. https://en.wikipedia.org/wiki/Disjoint-set_data_structure
19. Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: Querying minimal

steiner maximum-connected subgraphs in large graphs. In: CIKM,
pp. 1241–1250 (2016)

20. Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: On minimal steiner
maximum-connected subgraph queries. In: TKDE (2017)

21. Huang, X., Cheng, H., Qin, L., Tian,W., Yu, J.X.: Querying k-truss
community in large and dynamic graphs. In: SIGMOD (2014)

22. Huang, X., Lakshmanan, L.V., Yu, J.X., Cheng, H.: Approximate
closest community search in networks. Proc. VLDB Endow. 9(4),
276–287 (2015)

23. Kacholia, V., et al.: Bidirectional expansion for keyword search on
graph databases. In: VLDB (2005)

24. Kargar, M., An, A.: Keyword search in graphs: finding r-cliques.
PVLDB 4(10), 681–692 (2011)

25. Li, R.-H., Qin, L., Yu, J.X., Mao, R.: Influential community search
in large networks. In: PVLDB (2015)

26. Li, R.-H., Yu, J.X., Mao, R.: Efficient core maintenance in large
dynamic graphs. TKDE 26, 2453–2465 (2014)

27. Liu, Y., Niculescu-Mizil, A., Gryc,W.: Topic-link lda: joint models
of topic and author community. In: ICML (2009)

28. Mislove, A.: Online social networks: measurement, analysis, and
applications to distributed information systems. Ph.D. thesis, Rice
University, Department of Computer Science (2009)

29. Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhat-
tacharjee, B.: Growth of the flickr social network. In: Proceedings
of the 1st ACM SIGCOMM Workshop on Social Networks
(WOSN’08) (2008)

30. Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent
topic models for text and citations. In: KDD (2008)

31. Newman, M.E.J., Girvan, M.: Finding and evaluating community
structure in networks. Phys. Rev. E 69(2), 026113 (2004)

32. Qi, G.-J., Aggarwal, C.C., Huang, T.S.: Online community detec-
tion in social sensing. In: WSDM, pp. 617–626. ACM (2013)

33. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical
evolving graph sequences. VLDB 4(11), 726–737 (2011)

34. Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detec-
tion in large networks using content and links. In: WWW (2013)

35. Sachan, M., et al.: Using content and interactions for discovering
communities in social networks. In: WWW (2012)

36. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L.,
Çatalyürek, Ü.V.: Incremental k-core decomposition: algorithms
and evaluation. VLDB J. 25(3), 425–447 (2016)

37. Seidman, S.B.:Network structure andminimumdegree. Soc.Netw.
5(3), 269–287 (1983)

38. Sozio, M., Gionis, A.: The community-search problem and how to
plan a successful cocktail party. In: KDD (2010)

39. Subbian, K., Aggarwal, C.C., Srivastava, J., Yu, P.S.: Community
detection with prior knowledge. In: SDM (2013)

40. Thomee, B., et al.: The new data and new challenges in multimedia
research. (2015). arXiv:1503.01817

41. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-
effort pattern matching in large attributed graphs. In: KDD (2007)

42. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based
approach to attributed graph clustering. In: SIGMOD (2012)

43. Yang, J., McAuley, J., Leskovec, J.: Community detection in net-
works with node attributes. In: ICDM, pp. 1151–1156 (2013)

44. Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content for
community detection: a discriminative approach. In: KDD (2009)

45. Yu, J.X., Qin, L., Chang, L.: Keyword search in databases. Synth.
Lect. Data Manag. 1, 1–155 (2009)

46. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on struc-
tural/attribute similarities. Proc. VLDB Endow. 2(1), 718–729
(2009)

123

http://arxiv.org/abs/cs/0310049
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://arxiv.org/abs/1503.01817

	Effective and efficient attributed community search
	Abstract
	1 Introduction
	2 Related work
	3 The ACQ problem
	4 Basic solutions
	4.1 Two-step framework

	5 CL-tree index
	5.1 Index overview
	5.2 Index construction
	5.2.1 The basic method
	5.2.2 The advanced method

	6 Query algorithms
	6.1 The incremental algorithms
	6.1.1 Inc-S algorithm
	6.1.2 Inc-T algorithm

	6.2 The decremental algorithm

	7 Index maintenance
	7.1 Keyword update
	7.2 Edge insertion
	7.3 Edge deletion

	8 The ACQ-A and ACQ-M problems
	8.1 The ACQ-A problem
	8.2 The ACQ-M problem

	9 Experiments
	9.1 Setup
	9.2 Results on effectiveness
	9.2.1 ACQ effectiveness
	9.2.2 A case study

	9.3 Results on efficiency

	10 Conclusions
	A Proofs of lemmas
	B Basic solutions for ACQ
	C Basic algorithms for ACQ-A and ACQ-M
	References

