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Community Search

Find a subgraph: 1) contains query nodes; 2) the cohesiveness is maximized
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Application (Social Network)
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Other Applications

Gggﬁgle § Academic Search

Protein-Protein
Social Media Marketing Research Team Assembling interaction Network
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Cohesiveness

Metrics to measure cohesiveness:
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Cohesiveness

Metrics to measure cohesiveness:
@ k-core [KDD'10, SIGMOD’14, DMKD'15, VLDB'16]

> the minimum degree among all nodes in the subgraph > k
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Cohesiveness

Metrics to measure cohesiveness:
@ k-core [KDD'10, SIGMOD’14, DMKD'15, VLDB'16]
> the minimum degree among all nodes in the subgraph > k
@ k-truss [SIGMOD'14, VLDB'15]

> every edge is contained in at least £ — 2 triangles within the subgraph
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Cohesiveness

Metrics to measure cohesiveness:
@ k-core [KDD'10, SIGMOD’14, DMKD'15, VLDB'16]
> the minimum degree among all nodes in the subgraph > k
@ k-truss [SIGMOD'14, VLDB'15]

> every edge is contained in at least £ — 2 triangles within the subgraph

@ connectivity [SIGMOD'15]
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Connectivity [Gibbons, Graph Theory, 1985]

Given an undirected graph G:
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Connectivity [Gibbons, Graph Theory, 1985]

Given an undirected graph G:

@ A(G): the minimum number of edges whose removal disconnects G.
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Connectivity [Gibbons, Graph Theory, 1985]

Given an undirected graph G:

@ A\(G): the minimum number of edges whose removal disconnects G.

G f

C d

Figure : An example of connectivity

AG)=3
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Connectivity [Gibbons, Graph Theory, 1985]

Given an undirected graph G:

@ A(G): the minimum number of edges whose removal disconnects G.

G f

C d

Figure : An example of connectivity

A(G)=3
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Comparison with k-core and k-truss

Connectivity is more appropriate to model cohesiveness:
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Comparison with k-core and k-truss

Connectivity is more appropriate to model cohesiveness:

@ k-core only restricts degrees of nodes in subgraphs without any structure
constraint.

» E.g., in Figure(a), Q@ = {a, e}
> return G (k-core) VS  Gi (connectivity v')

(a) Q@ ={a,e}
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Comparison with k-core and k-truss

Connectivity is more appropriate to model cohesiveness:

@ k-core only restricts degrees of nodes in subgraphs without any structure
constraint.

» E.g., in Figure(a), Q@ = {a, e}
> return G (k-core) VS  Gi (connectivity v')

@ k-truss is too restrictive on the triangle structure.

» E.g., in Figure(b), Q = {a}
> return @) (k-truss) VS  the whole graph (connectivity v')

(a) Q@ ={a,e} (b) @ ={a}
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Steiner Maximum-Connected Subgraph (SMCS) Problem

Definition

Given an undirected graph G and a set () of query nodes, the SMCS is a subgraph Gg
of G which contains @ and the connectivity A(Gg) of Gg is maximized.
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Steiner Maximum-Connected Subgraph (SMCS) Problem

Definition
Given an undirected graph G and a set () of query nodes, the SMCS is a subgraph Gg
of G which contains @ and the connectivity A(Gg) of Gg is maximized.

e [ N
| ;li
| t
|l ! |

| [
I_L:_Q::::::_ _ (32_G_3| G

Figure : An example of SMCS, with @) = {f}

e SMCSs: {G1, Ga, G5}
@ s¢(Q) = 3 (the connectivity of any SMCS of Q)
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Maximum SMCS [Chang et al., SIGMOD'15]

Definition
An SMCS Gg of @ such that the number of nodes in Gg is maximized.
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Maximum SMCS [Chang et al., SIGMOD'15]

Definition
An SMCS Gg of @ such that the number of nodes in Gg is maximized.
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Figure : An example of maximum SMCS, with ) = {/}

@ maximum SMCS:{G3}
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Maximum SMCS [Chang et al., SIGMOD'15]

Definition

An SMCS Gg of @ such that the number of nodes in Gg is maximized.

Drawback: the returned subgraph is too large
E.g., on the DBLP dataset (803K Nodes, 3M Edges), a maximum SMCS has over
400K nodes in average.
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Maximum SMCS [Chang et al., SIGMOD'15]

Definition

An SMCS Gg of @ such that the number of nodes in Gg is maximized.

Drawback: the returned subgraph is too large
E.g., on the DBLP dataset (803K Nodes, 3M Edges), a maximum SMCS has over
400K nodes in average.

Name size (Max-SMCS)
Jiawei Han, Jian Pei 12,459

Michael Stonebraker, Jennie Duggan 171,435

Reynold Cheng 26,223

Jiafeng Hu 414,499

Sigiang Luo 130,228
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Minimum SMCS

Definition
An SMCS Gg of @ such that the number of nodes in Gg is minimized.
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Minimum SMCS

Definition
An SMCS Gg of @ such that the number of nodes in Gg is minimized.
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Figure : An example of minimum SMCS, with () = { [}

@ minimum SMCS: {G2}
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Minimum SMCS

Definition

An SMCS Gg of @ such that the number of nodes in Gg is minimized.

Theorem (Inapproximability)

The minimum SMCS problem is NP-hard. Moreover, there does not exist any
polynomial-time algorithm that approximates the minimum SMCS problem within
any constant ratio.
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Minimal SMCS

Definition

An SMCS Gg of @ such that any proper induced subgraph of G containing @ is not
an SMCS of Q.
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Minimal SMCS

Definition
An SMCS Gg of @ such that any proper induced subgraph of G containing @ is not
an SMCS of Q.

o [T 3 N
| ]
|| | |
| t
|I I |

| [
E:}::::::__J__%J@ G

Figure : An example of minimal SMCS, with @) = { [}

e minimal SMCSs: {G;, G2}
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Our Contributions

e Propose the minimum and minimal SMCS problems.
e Prove the hardness of the minimum SMCS problem.

e Devise the Expand-Refine algorithm and its approximate version
with accuracy guarantees.
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Expand-Refine Framework

Input: a graph G, and a set Q of query nodes
Output: a minimal SMCS of @
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Expand-Refine Framework

Input: a graph G, and a set Q of query nodes
Output: a minimal SMCS of @

@ Compute the Steiner-connectivity of @
» the connectivity of any SMCS of @ (existing solution, in O(|Q)))
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Expand-Refine Framework

Input: a graph G, and a set Q of query nodes
Output: a minimal SMCS of @

@ Compute the Steiner-connectivity of @
> the connectivity of any SMCS of @ (existing solution, in O(|Q]))
@ Perform Expand operation to generate an SMCS of @)

> lteratively expand the candidate node set and test whether there exists an

SMCS.
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Expand-Refine Framework

Input: a graph G, and a set Q of query nodes
Output: a minimal SMCS of @

@ Compute the Steiner-connectivity of @
» the connectivity of any SMCS of @ (existing solution, in O(|Q)))
@ Perform Expand operation to generate an SMCS of @)
> lteratively expand the candidate node set and test whether there exists an

SMCS.

© Execute Refine operation on the SMCS returned by step 2 to find a minimal
SMCS of @
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A Toy Example (Graph G, query Q = {b, f})

@ Compute the Steiner-connectivity, sc¢(Q)=3.
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A Toy Example (Graph G, query Q = {b, f})

@ Compute the Steiner-connectivity, sc¢(Q)=3.
@ Generate a candidate SMCS of Q, e.g., G;.
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A Toy Example (Graph G, query Q = {b, f})

@ Compute the Steiner-connectivity, sc¢(Q)=3.
@ Generate a candidate SMCS of Q, e.g., G;.
@ Refine G; to get a minimal SMCS: the green-shaded graph, {a,b,e, f}.
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The Refine Operation (Step 3) [Basic refinement]

G[H]

removy removelf \Q?ve c

G[H\e] G[H\] G[H\c]

b Xa) b, a b a
L

d
X No SMCS X No SMCS v/ Smaller SMCS
remove e remove f remove a
b'xag b a b
f f
Time Complexity:O(|H|? - M)
G[H\e] G[HXf] G[H\a]
X No SMCS X No SMCS X No SMCS
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Advanced Refi
[Separable/Non-separable] Given any SMCS G[H] of @, node u is separable for Q if

there exists any SMCS of Q in G[H\u]; otherwise, u is non-separable for Q).

b a @ query node
G[H] @ non-separable node
f
remov7 remove fl wjove c
G[H\e] GIH\] G[H\c]
b a b ‘Ta b a
_X :
f f
K d
X No SMCS X No SMCS v/ Smaller SMCS
remove a
b L]
f
G[H \a]
X No SMCS

October 27, 2016 16 / 24
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Advanced Refinement
[Separable/Non-separable] Given any SMCS G[H] of @, node u is separable for Q if

there exists any SMCS of Q in G[H\u]; otherwise, u is non-separable for @

b a @ query node
GIH] @ non-separable node
f
remov.e/ remove fl w)ove c
G[H\e] GIH G[H\c]
b Xa) b ‘T b a
I i f
% d
X No SMCS X' No SMCS ~/ Smaller SMCS
remove a
b .
f
All nodes will be tested at most once. O(|H|- M) G[H"\a]
X No SMCS
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Relaxation

o Connectivity Relaxation (Early Stop in the Expand Step)

» Stop expanding the candidate node set S if |S| > 6
» Extract a maximal SMCS from S

@ Minimality Relaxation (Approximation in the Refine Step)
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Minimality Relaxation (Approximation in the Refine Step)

Main idea:
@ Sample nodes uniformly at random.

@ Record the number of non-separable nodes sampled consecutively.

log %
logr

e Halt when w = | non-separable nodes are sampled consecutively.
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Minimality Relaxation (Approximation in the Refine Step)

Main idea:
@ Sample nodes uniformly at random.

@ Record the number of non-separable nodes sampled consecutively.

log %

o Halt when w = [ 122

| non-separable nodes are sampled consecutively.

|returned SMCS|

» Approximation ratio r: minimal SMCS|
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Minimality Relaxation (Approximation in the Refine Step)

Main idea:
@ Sample nodes uniformly at random.

@ Record the number of non-separable nodes sampled consecutively.

log %
logr

e Halt when w = | non-separable nodes are sampled consecutively.

|returned SMCS|
» Approximation ratio r: Tmimimal SMCS]

» Failure probability J: the probability that the approximation ratio is larger than
r in practice.
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Minimality Relaxation (Approximation in the Refine Step)

Main idea:
@ Sample nodes uniformly at random.
@ Record the number of non-separable nodes sampled consecutively.

log + .
o Halt when w = [logg;i] non-separable nodes are sampled consecutively.

turned SMC
» Approximation ratio 7: milgwcgl

» Failure probability J: the probability that the approximation ratio is larger than
r in practice.

Lemma (Approximated Minimal SMCS)

Given an SMCS G[H] of Q, for any constant § € (0,1) and r > 1, the proposed
algorithm returns an r-approximation of a minimal SMCS of Q in G[H] with

probability at least (1 — 9).

October 27, 2016 18 / 24
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Experiments

Table : Dataset statistics (K=10% and M=10°)

1D Dataset #Nodes #Edges d SCmaz
D1 ca-CondMat 21K 91K 8.55 25
D2 | soc-Epinionsl 75K 405K 10.69 67
D3 DBLP 803K 3.2M 8.18 118
D4 wiki-Talk 2.3M 4.6M 3.90 131
D5 as-Skitter 1.6M 11M 13.09 111
D6 uk-2002 18M 261M 28.34 943

All algorithms are implemented in C++4.

Queries:
o size |Q| (default: 3)

@ inter-distance I: maximum distance between any nodes in @ (default: 2)
@ #Queries: 500
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Effectiveness

Metrics:
@ Size: The number of nodes in the result graph

o Edge Density p: the ratio of the number of edges of a graph to that of its

; 2B
complete version (W)

Exp-1: Quality Evaluation (500 queries, |Q| from 1 to 16, I=2)

(a) Size
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Effectiveness (Con

Exp-2: DBLP case study

Q={"Michael Stonebraker”, “Samuel Madden”, “Daniel J. Abadi", “Jennie

Duggan” }
Size P
max-SMCS | 171,435 | 107*
Local-SMCS| 129 0.21
B-ER-I-A3 17 0.54
ER-I-Ag 17 0.54
ER-T 15 0.58

(a) Quality Measure

Daniel J. Abadi

Essam Mansoll Z
Aaron J. Elmore Rebecca Taft
Jeénnie Duggan

(b) The minimal SMCS
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Exp-3: Effect of queries (Varying the query size |Q)|)

—*¥—Basic —+ER —8-ERI A-ERIA; —g-BERIA;
10° inf Inf kK
10: MK w0k g x—%—F 108
g w0 § 107 8 102 N
% i g A R
E 1 g E 10 L £ 105
=
(= M ) 3 = L
101£ 1 1
102 10t 10
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
1Ql IQl IQl
(a) D1 (b) D2 (c) D3
Inf ¥ * * In K
3
e _.10° L
o (%)
2 10? i 2
T T10 N
E 107 £
= 2 =
14 J 1 ]
10 1
1 2 4 8 16 1 2 4 8 16
1Ql lo]]
(d) b4 (e) D5

Inf: the running time exceeds 1 hour
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Conclusion

@ Propose the minimal SMCS problem and prove the hardness of the minimum
SMCS problem.

@ Develop an efficient Expand-Refine algorithm and its approximate version
with accuracy guarantees.

@ Detailed evaluation on real graph datasets demonstrates the effectiveness and
efficiency of our solution.
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Thanks!

Jiafeng Hu
jhu@cs.hku.hk
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