

SEQ: Example-based Query for Spatial Objects

Siqiang Luo, Jiafeng Hu, Reynold Cheng, Jing Yan, Ben Kao The University of Hong Kong

Motivation

Question: when we are searching multiple spatial objects with complex requirements, what are we going to do?

Option 1: SQL?

Difficult for non-expert users

Option 2: Keyword search?

Hard to describe spatial layout characteristics

Hence, we are promoting more user-friendly search: example-based spatial search

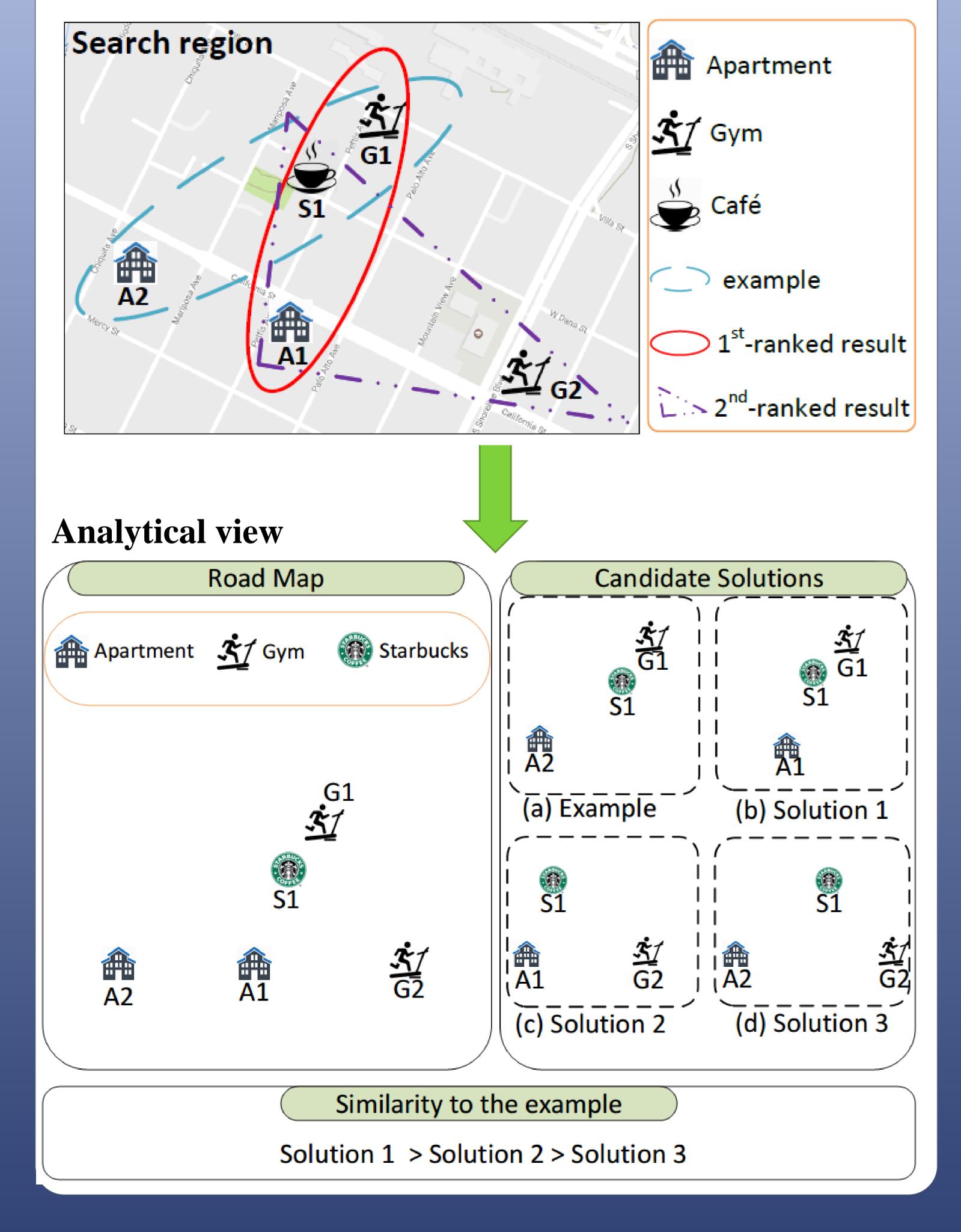
SEQ: Spatial Exemplar Query

Consider renting a house:

Find an apartment which is close to a gym, and there is a café between them.

Input: mark an apartment, a gym and a café as a desired example Output: A list of similar results

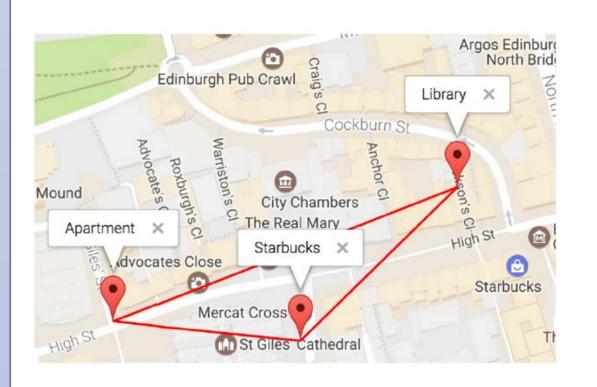
Interface view

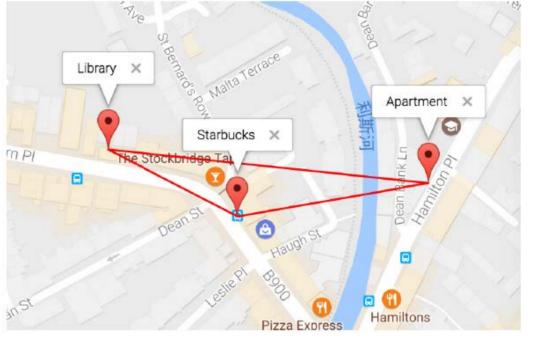


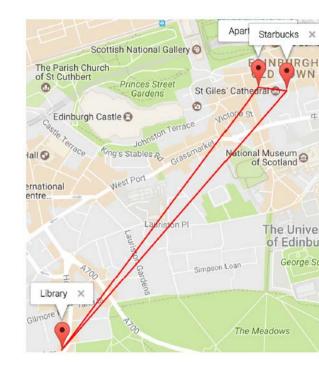
Query Definition

Definition (**SEQ**) Given a spatial range R, an integer k, an example tuple t. The SEQ returns top-k similar tuples t₁, t₂, ..., t_k with respect to the tuple similarity to t, such that all objects in t_i are located in R, and t_i is of the same category as t.

Tuple Similarity: $\alpha \times \text{Spatial Similarity} + (1-\alpha) \times \text{Attribute Similarity}$







User input example

Attribute Spatial

Attribute

Spatial

Algorithms

- 1. Find all candidates, e.g., find all (Apartment, Gym, Café)
- 2. Object-wise ranking based on attribute similarity
- 3. Depth first search and prefix-based pruning

Given example t=(a, b, c) and candidate $t_1=(d, e, f)$, we can compute a lower bound of Similarity(t, t_1) based on (a,b) and (d,e). If the lower bound is larger than k-th similarity, then prune t_1 .

Experiments

Yelp dataset (https://www.yelp.com/dataset_challenge)

POI information: location, category, rating, review count

 α : weight of spatial similarity k: #returned results

r: the radius of search region (km)

Pruning effectiveness: the percentage of pruned candidates by prefix-based pruning

α	0.1	0.3	0.5	0.7	0.9
Time (ms)	316	336	338	349	380
Pruning effectiveness (%)	98.8	98.7	98.5	98.1	97.1
k	1	5	10	20	50
Time (ms)	32	338	349	363	403
Pruning effectiveness (%)	99.8	98.5	98.1	97.5	96.5
r	1	2	3	4	5
Time (ms)	68	161	338	586	847
Pruning effectiveness (%)	97.6	98.3	98.5	99.5	99.5

Future Work

- 1. Integrate SEQ into real spatial services
- 2. human-in-the-loop SEQ
- 3. Different ways of inputting examples

References

[1] G. Cong, C. S. Jensen, and D. Wu. Ecient retrieval of the top-k most relevant spatial web objects. VLDB, 2(1):337–348, 2009.

[2] H. Li, C. Chan, and D. Maier. .ery from examples: An iterative, data-driven approach to query construction. VLDB, 8(13):2158–2169, 2015.

[3] J. Liu, K. Deng, H. Sun, Y. Ge, X. Zhou, and C. S. Jensen. Clue-based spatiotextual query. VLDB, 10(5):529–540, 2017.