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ABSTRACT
Spatial object search is prevalent inmap services (e.g., GoogleMaps).

To rent an apartment, for example, one will take into account its

nearby facilities, such as supermarkets, hospitals, and subway sta-
tions. Traditional keyword search solutions, such as the nearby
function in Google Maps, are insu�cient in expressing the o�en

complex a�ribute/spatial requirements of users. �ose require-

ments, however, are essential to re�ect the user search intention.

In this paper, we propose the Spatial Exemplar�ery (SEQ), which

allows the user to input a result example over an interface inside

the map service. We then propose an e�ective similarity measure to

evaluate the proximity between a candidate answer and the given

example. We conduct a user study to validate the e�ectiveness of

SEQ. Our result shows that more than 88% of users would like to

have an example assisted search in map services. Moreover, SEQ

gets a user satisfactory score of 4.3/5.0, which is more than 2 times

higher than that of a baseline solution.

1 INTRODUCTION
Searching spatial objects, which o�en takesmultiple objects (i.e.,their

a�ributes) and the relative distances among them into considera-

tion, is prevalent in POI (Point of Interest) recommendation, trip

planning, and geo-social analytics. A typical scenario in trip plan-

ning is that tourists are interested in a set of co-located hotels and

a�ractions, wishing to �nd a hotel with a good rating (a�ribute 1),
a low cost (a�ribute 2) and proper distances to a�ractions (other
objects).

Notably, users have various requirements on the relative dis-

tances of their interesting objects. To �nd a house, for example, one

o�en considers neighboring educational resources and accesses to

daily facilities such as supermarkets and subway stations. Parents

with young children favor houses surrounded by abundant school

resources for the education purpose, while elderly may care more

about the easy accesses to supermarkets or other daily facilities.

As such, the relative distances of objects interested by these two

kinds of people can be di�erent. As another example, in geo-social

analytics, crime analysts are interested in analyzing the spatial re-

lationship of a series of crime scenes. Di�erent layouts of criminal

spots, e.g., the spots compositing in a line or a circle, are used in

analyzing di�erent crimes
1
.
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Figure 1: An example SEQ.

Traditional keyword search solutions, such as the nearby func-

tion
2
in Google Maps, is not capable of capturing users’ complex

search intention (e.g., object a�ribute requirements, and distance

requirements among objects), as it only allows a user to search a
single type of interesting objects that are close to a speci�c place.
Another way to express such complicated requirements is to use

SQL queries to indicate speci�c constraints such as distance thresh-

olds and a�ribute constraints. However, it is di�cult for non-expert

users to write sophisticated SQL queries.

To assist a user in expressing her search intention, we propose

an example-based solution called SEQ (Spatial Exemplar �ery).

In SEQ, users can use an example to describe their requirements

on the objects. An example is a group of objects that carry the

spatial proximity information (e.g, the relative locations of objects)

and a�ribute requirements. Users can have several ways to �nd

a suitable example as the input to SEQ. For instance, a user can

navigate the online map to mark an example
3
; alternatively, the

user can �rst input relevant keywords, e.g., apartment, gym, cafe,
to seek for candidate POI combinations, then pick a combination

of objects as the example that best �ts the user’s search intention.

Given the example, a search region and an integer k , SEQ �rst

automatically generates an internal pa�ern of the given example,

including its a�ribute values and relative locations of objects. �en,

SEQ searches within the region to retrieve k groups of objects that

are the most similar to the given example based on their internal

pa�erns.

We illustrate an example of SEQ in Fig. 1: a sports-lover considers

renting an apartment that is close to a gym for her daily physical

exercises. Usually, she likes to have co�ee a�er exercising. In this

scenario, she is interested in the combination (apartment, gym, cafe)

such that the cafe is on the road from the gym to the apartment (i.e.,

three objects forming a route). She navigates the online map to �nd

a good example (A2,C1,G1). With this example and a search region

as the input to SEQ, SEQ outputs the top-k (with k = 2) results

according to their similarity to the example. Intuitively, the 1
st
-

ranked result �ts best to the user requirement, as in this solution

she can easily �nd a cafe when she goes back to the apartment

2
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3
A user interaction interface is needed to implement this function.

Short Paper CIKM’17, November 6-10, 2017, Singapore

2179

http://www.iaca.net/Resources/Articles/identifyingcrimepatterns.pdf
https://goo.gl/3ibV5z


(A1) from the gym (G1). However, such a typical user requirement

is hard to describe with traditional location search services, e.g.,

the nearby function in Google Maps. In particular, the nearby
function cannot distinguish the two results very well because it

outputs the results as long as the objects are within a speci�ed

range. �is is unsatisfactory. For example, if the 2
nd

-ranked result

is recommended, then the user needs a long detour to the cafe from

the gym before she goes back to the apartment, in order to have a

co�ee a�er doing her exercises.

Our contributions. To our best knowledge, our work is the �rst

to integrate a query-by-example paradigm into the search for a

group of spatial objects. In particular, we motivate the study of

Spatial Exemplar �ery (SEQ), which can relieve the burden for

the user to express her search intention. Second, we de�ne a novel

similarity measure and use it to �nd results that are the k most

similar to the example. Observing that a simple solution o�en

costs more than 30 seconds to evaluate the SEQ, we propose an

e�cient method to reduce the cost to less than 1 second. Finally, we

conduct experiments and a user study on real datasets to validate

the e�ectiveness and e�ciency of our methods.

2 RELATEDWORK
QBE inRelationalDatabase. �ery by example (in short, QBE) [2,

6] is recently studied in relational database. QBE allows users to

input a number of desired sample output tuples. �en, QBE returns

to the user one SQL whose execution generates those examples as

output. Existing studies of QBE [2, 6] aim at recovering SQL queries

by using a large set of result tuples. Hence, they are di�cult to apply

in map services. �e reason is that it is infeasible to require a user

to input a large set of examples in map services.

Spatial-keyword �eries. Spatial-keyword query (e.g., [1, 3–

5, 7]) returns objects that are both relevant to the input textual

information and spatial information. �ese existing works focus on

e�cient evaluation of a query with rigid semantics, while our focus

is to simplify query expressions in spatial search. Our example-

based method complements their works in enhancing the expres-

sion of users’ intention.

3 DATA MODEL AND FORMULATIONS
We consider a spatial network that contains a collection of objectsO .

Each objectp ∈ O is associated with a typeTp , a list of a�ributesAp ,
and a coordinate (latp , lonp ). For example, the type of a Starbucks

store is a co�ee store. Its a�ribute can be the customer rating, which
indicates the customer impression on the store

4
. We de�ne a tuple

t = {p1, . . . ,pm } as a set of ordered objects, and use t[i] to represent
pi . Two tuples t1 and t2 are said to be of the same category, if for

any i ∈ [1,m], their ith objects are of the same type.

3.1 Problem Formulation
A natural way to de�ne the spatial structure of objects inside tuple

t is to de�ne the vector containing pairwise Euclidean distances
5

between two objects of tuple t , as follows.

4
the values are normalized to [0,1].

5
Our solution can easily incorporate other measures such as road network distances.

De�nition 3.1 (Distance Vector). �e distance vectorVt for a tuple
t={p1, . . . ,pm }, is the vectorVt={d (p1,p2),d (p1,p3), . . . ,d (p1,pm ),
d (p2,p3), . . . , d (p2,pm ), . . . , d (pm−1,pm )}, where d (·) denotes the
distance function.

�e dimension of the distance vector Vt ism
′ =m(m − 1)/2. By

the de�nition of the distance vector, it is then natural to de�ne

the spatial similarity of two tuples as the cosine similarity of their

corresponding distance vectors, as follows.

De�nition 3.2 (SIMs ). �e spatial similarity between two tuples

t1 and t2 is SIMs (t1, t2) = cos (Vt1 , Vt2 ).

Similarly, to measure the a�ribute similarity, we de�ne the At-
tribute Vector of an object.

De�nition 3.3 (A�ribute Vector). �e a�ribute vector Up for an

object p with a�ributes Ap = {a1, . . . ,ah }, is the vector Up =
{u1, . . . ,uh }, such that ui is the value of a�ribute ai for object p.

�en, the a�ribute similarity between two tuples is naturally

measured by the average cosine similarity of their corresponding

a�ribute vectors of objects. We therefore de�ne the following SIMa
to measure it.

De�nition 3.4 (SIMa ). �e a�ribute similarity between two size-

m tuples t1 and t2 that are of the same category, is SIMa (t1, t2) =
1

m
∑m
i=1 cos (Ut1[i],Ut2[i]).

Given the spatial similarity and a�ribute similarity of two tuples,

we combine them to de�ne the Tuple Similarity between tuple t1
and t2, SIM(t1, t2).

De�nition 3.5 (SIM). For two tuples that are of the same cate-

gory, their tuple similarity is SIM(t1, t2)=α · SIMs (t1, t2) +(1 − α ) ·
SIMa (t1, t2), with respect to parameter α ∈ [0, 1].

Based on De�nition 3.5, we de�ne the SEQ problem as follows.

De�nition 3.6 (SEQ). Given a spatial range R, an integer k , an
example tuple t∗. �e Spatial Exemplar �ery (SEQ) returns top-k
similar tuples t1, · · · , tk to t∗ with respect to the tuple similarity,

such that all objects in ti (i ∈ [1,k]) locate in R, and ti (i ∈ [1,k])
is of the same category as t∗.

Let us go back to the example in Fig. 1 to illustrate SEQ. �e

input example tuple contains one apartment, one cafe and one gym.

�e top-2 results returned are ordered by their tuple similarity (i.e.,

SIM) to the input example tuple.

4 EFFICIENT TOP-K SEARCH
A straightforward approach to address SEQ is to enumerate all

candidate tuples (hereina�er referred to as candidates) that are of
the same category as the example tuple t∗ in region R, and select

k candidates that are the most similar to t∗. However, the number

of such candidates can be very large. For example, there can be

thousands of objects with types “apartment” and “restaurant”. �en

there will be millions of candidates of (apartment, restaurant). We

therefore derive two e�ective theoretical bounds on SIMa and SIMs
to prune a large number of candidates. With our method, our

experiments show that more than 96% candidates are pruned.
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Our idea is to examine the candidates in a certain order to enable

e�ective candidate pruning. For ease of presentation, we �rst intro-

duce the rank representation of a candidate. Let listi (i ∈ [1,m]) be

the list containing all the objects that are of the same type as t∗[i]

(i.e., the ith object in t∗). We also suppose that the objects in listi
are sorted in a descending order of their a�ribute similarity to the

object t∗[i] (i.e., sorting object o ∈ listi according to cos (Uo ,Ut ∗[i])).

If an object appears in the jth position of the sorted list, we say

its rank is j. Now, with the lists (list1 to listm ), a candidate is a

tuple containing one object from each of the lists. Hence every

candidate s = {p1, . . . ,pm } can be represented by the ranks of each

of its elements. We denote the representation as R (s ). For example,

a candidate R (s ) = {r1, . . . , rm } means object pi ranks ri in listi .
We observe that many candidates share a certain pre�x (i.e., the

�rst few elements). Hence, if we can determine an upper bound on

SIM(s, t∗) for candidate s based only on a certain pre�x of s , and the

upper bound is less than the kth largest similarity to t∗, then we can
safely prune all candidates that share the same pre�x. �e reason is,

the similarity between t∗ and such candidates with the same pre�x

must not exceed the upper bound, and thus such candidates are

worse than the current k best candidates that have been inspected.

Next, we derive upper bounds respectively for SIMa and SIMs ,

which can be combined to derive an upper bound for SIM.

Bounding SIMa based on pre�x. Suppose there are two tuples s
and s∗ of sizem, whose rank representations are R (s ) = {r1, . . . , ri ,
ri+1, . . . , rm } and R (s

∗) = {r1, . . . , ri , 1, . . . , 1}. �en, SIMa (s, t
∗) ≤

SIMa (s
∗, t∗) since each list is sorted according to SIMa . �at means,

for any candidate s , SIMa (s
∗, t∗) is an upper bound of SIMa (s, t

∗),
where s∗ shares a certain pre�x of s and the remaining objects in

s∗ all rank �rst in their corresponding sorted lists.

Bounding SIMs based on pre�x. For any tuple s , given its length-
i pre�x (e.g., (s[1], . . . , s[i])), we can determine part of its corre-

sponding distance vector Vs = {y1, . . . ,yu , ?, . . . , ?}, where u =
i (i − 1)/2 and ? refers to some unknown value. We use Lemma 1 to

bound SIMs (s, t
∗) based on the known values of Vs . Note that in

Lemma 1, x ′j can be computed before examining any candidate, as

{x ′
1
, . . . ,x ′m′ } is the normalized distance vector of the example tuple

t∗. Also, when a pre�x of a candidate is known, we can evaluate

part of its distance vector (e.g., y1 to yu can be computed), and thus

the values of A, C can be computed. Hence, the upper bound value

can be evaluated based on Lemma 1.

Depth-First Search for Pruning. For any candidate with a pre�x

{s[1], . . . , s[i]}, we can combine the aforementioned two bounds to

derive an upper bound on SIM(s, t∗). To make use of such an upper

bound, we examine the candidates in a Depth-First-Search manner.

Formally, candidate s1 is examined before candidate s2, if and only

if there exists j such that s1[i] = s2[i] (∀1 ≤ i < j) and s1[j] ranks
higher than s2[j] in listj . In this order, candidates that share long

pre�xes are clustered together. If we �nd that the pre�x-derived

upper bound is less than the current kth largest similarity to t∗,
we can skip the examination of all those candidates that share the

pre�x. Due to space limitations, we omit the pesudocode. We give

an example as follows.

Example. Let list1 = {u1,u2}, list2 = {v1}, list3 = {w1,w2}.

�en, the DFS search visits the candidates in the order: {u1,v1,w1},

{u1,v1,w2},{u2,v1,w1},{u2,v1,w2}. If the upper bound based on

the pre�x {u2,v1} is less than the current kth largest similarity, we

can skip the examination of the last two candidates.

Lemma 1. Given the distance vector of the example tuple Vt ∗ =
{x1, . . . ,xm′ } and another distance vector Vs = {y1, . . . ,ym′ }. For

any u ∈ [1,m′), we have SIMs (s, t
∗) ≤

√
A2/C +

∑m′
j=u+1 x

′2
j , where

x ′j = x j/
√∑m′

i=1 x
2

i , A =
∑u
j=1 x

′
jyj , and C =

∑u
j=1 y

2

j .

Proof. Let D =
∑m′
j=u+1 y

2

j , then we have

SIMs (s, t ∗ ) = cos (Vs , Vt∗ ) =
A +

∑m′
j=u+1 x

′
jyj

√
C + D

=
A

√
C + D

+
1

√
C + D

∑m′

j=u+1
x ′j · yj

(Use Cauchy’s Inequality) ≤
A

√
C + D

+
1

√
C + D

√∑m′

j=u+1
x ′2j ·

∑m′

j=u+1
y2j

=
A

√
C + D

+
1

√
C + D

√∑m′

j=u+1
x ′2j · D

Letw = D
C , then

A
√
C + D

+
1

√
C + D

√∑m′

j=u+1
x ′2j · D

=
A
√
C
·

1

√
1 +w

+

√∑m′

j=u+1
x ′2j ·

√
w

w + 1

(Use Cauchy’s Inequality) ≤

√√√√
*.
,

(
A
√
C

)
2

+ *
,

√∑m′

j=u+1
x ′2j

+
-

2

+/
-
· *
,

(
1

√
1 +w

)
2

+

(√
w

w + 1

)2
+
-

=

√
A2

C
+

∑m′

j=u+1
x ′2j

5 EVALUATION
Dataset and�eries. We use the POI dataset published by Yelp

6
,

including 77,444 POIs. For each POI, its geo location and a�ributes,

e.g., ratings and categories are all recorded. We randomly create

100 queries within a circular range of radius r . �e tuple size is 3

by default. Table 1 summarizes the main parameters used in the

experiments (default values are in bold).

Algorithms. We implemented BASIC (the direct enumeration so-

lution) and PRUNE (the algorithm with pruning) in C++. Both of

them are introduced in Sec. 4. Our experiments are conducted on a

machine with a 2.3 GHz Intel Core i7 processor and 16GB memory.

Param Description Value
α Relative weights of the two similarities 0.1, 0.3, 0.5, 0.7, 0.9
r Valid search range radius 1, 2, 3, 4, 5 (km)

k �e number of returned results 1, 5, 10, 20, 50
Table 1: Experiment parameters

E�ciency. �e average running times of PRUNE are shown in

Table 2. �e performance is not sensitive to the changes ofα because

both SIMa and SIMs need to be calculated as long as α > 0. When

we increase k or the search range r , the running time increases,

since more candidates will be considered when k (or r ) increases.
However, even when k (or r ) is set to a large value, PRUNE still

performs within 1 second for each query. �e main reason is that a

large number of candidates are pruned by the proposed e�ective

6
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(a) �e given example (b) �e 1
st
-ranked result (c) �e 2

nd
-ranked result (d) Result of RKS

Figure 2: Case study of SEQ.

α 0.1 0.3 0.5 0.7 0.9

Time (ms) 316 336 338 349 380

Pruning e�ectiveness (%) 98.8 98.7 98.5 98.1 97.1

k 1 5 10 20 50

Time (ms) 32 338 349 363 403

Pruning e�ectiveness (%) 99.8 98.5 98.1 97.5 96.5

r 1 2 3 4 5

Time (ms) 68 161 338 586 847

Pruning e�ectiveness (%) 97.6 98.3 98.5 99.5 99.5

Table 2: E�ciency evaluation.

bounding techniques. As shown in Table 2, the Pruning e�ectiveness
is always more than 96%, which means more than 96% candidates

are pruned. We omit the running time of BASIC, as on average

it cannot �nish a query within 30 seconds, which is infeasible in

practice.

Case Study. Fig. 2 demonstrates an intuitive example of SEQ

and its comparison with the Range Keyword Search (RKS), which

generalizes the Google Map nearby function to multiple types of

objects
7
. Fig. 2(a) is the input example; Figs. 2(b) and (c) show the

top-2 results. �e 1
st
-ranked result is located in the same region as

the given example, while the 2
nd

-ranked result is a set of objects

which are relatively distant from the objects in the example. �e

distances between the objects, in both results, are quite similar to

the example. In addition, the result indicates that the de�nition

of SEQ is able to capture the spatial pa�ern (the relative locations

and directions of objects). In contrast, the result given by RKS, as

shown in Fig. 2(d), does not preserve the spatial pa�ern of the input.

Intuitively, we think this result is not as good as the SEQ results.

User Study. To validate the usefulness of SEQ, we conducted a user
study. �ere are two goals. First, we want to know whether users
will choose to use examples, complementing to keywords, to express
their search interest; Second, when compared with the traditional

methods like RKS, whether SEQ returns be�er results. We invited

26 university students to participate in this study. At the �rst of

the user study, we presented two de�nitions of SEQ and RKS, and

asked students an open question whether they would choose to use

SEQ. 88% of students answered they would alternatively choose

SEQ. �en, we presented 16 pairs of comparisons between our

result and the result of RKS for some typical search intentions.

7
Given a region R and multiple object types T1, . . . , Tw , RKS returns objects

{o1, . . . , ow } in R that respectively match the given types.

For example, a tourist is looking for a low-cost hotel that is close

to some a�ractions. In each comparison, they need to rate their

satisfaction about the two results (assuming they are issuing the

search intention themselves). In addition, for the 416(= 26 × 16)
queries tested in the study, our SEQ results get an average of 4.3/5.0

satisfactory score, which is signi�cantly be�er than that of RKS,

whose average score is 1.8/5.0.

6 CONCLUSIONS AND FUTUREWORK
We propose SEQ that assists users in expressing their search inten-

tion in map services. We believe that SEQ lies in the intersection

of research �elds such as information retrieval, human-computer

interaction and NLP.

�is topic can be extended in several ways. First, it is interesting

to integrate SEQ into a map service, including designing a user-

friendly interface, and studying how SEQ can complement existing

functions in map services. Another direction is to learn the search

intention of users by conducting SEQ iteratively in a user-system

interactive manner. It is also possible to provide users with multiple

ways to create their examples. For instance, users can draw a sketch,

or use natural language to describe their desired examples.
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