On Embedding Uncertain Graphs

Jiafeng Hu, Reynold Cheng, Zhipeng Huang, Yixiang Fang and Siqiang Luo

Department of Computer Science
 The University of Hong Kong

jhu@cs.hku.hk

November 7, 2017

Graphs are everywhere

Social Network

Collaboration Network

Protein-Protein interaction Network

Uncertainty in Graph data

- Wireless sensor networks (WSNs)
- Nodes: sensors
- Edges: wireless connectivity between sensors
- Uncertainties: probabilities of wireless connectivity

Uncertainty in Graph data

- Protein-Protein Interaction Networks (PPI)
- Nodes: Proteins
- Edges: an interaction between proteins
- Uncertainties: probabilities of interactions between proteins derived from experimental evidence

Gabriele Cavallaro [Genome-wide analysis of eukaryotic twin $\mathrm{CX}_{9} \mathrm{C}$ proteins]

Uncertainty in Graph data

Uncertain Graphs: each edge has an existence probability.

- Social Networks
- Traffic Networks
- Wireless Sensor Networks
- Protein-interaction Networks
- ...

Possible World Semantics (PWS)

- Given an uncertain graph \mathcal{G}, a possible world of \mathcal{G} is a deterministic graph $G=\left(V, E_{G} \subseteq E\right)$. Assume the existence probabilities of edges are mutually independent [VLDB'10, KDD'10].

$$
\operatorname{Pr}[G]=\prod_{e \in E_{G}} \mathbf{P}_{e} \prod_{e \in E \backslash E_{G}}\left(1-\mathbf{P}_{e}\right)
$$

Possible World Semantics (PWS)

- Given an uncertain graph \mathcal{G}, a possible world of \mathcal{G} is a deterministic graph $G=\left(V, E_{G} \subseteq E\right)$. Assume the existence probabilities of edges are mutually independent [VLDB'10, KDD'10].

$$
\operatorname{Pr}[G]=\prod_{e \in E_{G}} \mathbf{P}_{e} \prod_{e \in E \backslash E_{G}}\left(1-\mathbf{P}_{e}\right)
$$

(a) An uncertain graph \mathcal{G}
(b) A possible world of \mathcal{G}

$$
\begin{aligned}
\operatorname{Pr}[G] & =\mathbf{P}_{a d} \mathbf{P}_{b d} \mathbf{P}_{b c}\left(1-\mathbf{P}_{a b}\right)\left(1-\mathbf{P}_{c d}\right) \\
& =0.1 \times 0.8 \times 0.6 \times 0.1 \times 0.8=0.00384
\end{aligned}
$$

Uncertain Graph Mining

Tasks:

- Clustering [TKDE'13, ICDM'12]
- Classification [ICDM'09, SSDBM'14]
- k-NN queries [VLDB'10]

Uncertain Graph Mining

Tasks:

- Clustering [TKDE'13, ICDM'12]
- Classification [ICDM'09, SSDBM'14]
- k-NN queries [VLDB'10]
- ...

Shortcomings:

- High computational cost: expensive to compute similarities between nodes under PWS.
- Low adaptability: solutions are tailored for a particular mining task.

Graph Embedding

Graph G

Embedding
|V|

$K=4$ dimensions

Graph Embedding

Graph G

Embedding

|V|

$K=4$ dimensions

- Existing embedding solutions (for deterministic graphs): DeepWalk [KDD'14], LINE [WWW'15], node2vec [KDD'16], etc

Graph Embedding

Graph G

Embedding

$|V|$

$K=4$ dimensions

- Existing embedding solutions (for deterministic graphs): DeepWalk [KDD'14], LINE [WWW'15], node2vec [KDD'16], etc
- Not designed for uncertain graphs

Graph Embedding

Graph G

Embedding

$\longrightarrow|V|$

$K=4$ dimensions

- Existing embedding solutions (for deterministic graphs): DeepWalk [KDD'14], LINE [WWW'15], node2vec [KDD'16], etc
- Not designed for uncertain graphs
- Simply remove the probabilities \rightarrow poor performance

Uncertain Graph Embedding

URGE: UnceRtain Graph Embedding

URGE: UnceRtain Graph Embedding

Step 1: Proximity matrix S

- (second order) Expected Jaccard Similarity (EJS)
- (high order) Probabilistic Random Walk with Restart (PRWR)

URGE: UnceRtain Graph Embedding

Step 2: Objective function

$$
\min _{\mathbf{U}, \tilde{\mathbf{U}}}\left\|\mathbf{S}-\mathbf{U} \tilde{\mathbf{U}}^{T}\right\|^{2}+\frac{\lambda}{2}\left(\|\mathbf{U}\|^{2}+\|\tilde{\mathbf{U}}\|^{2}\right)
$$

- (Input) $\mathbf{S} \in \Re^{n \times n}$: proximity matrix;
- (Input) λ controls the weight of the regularization term.
- (Output) matrices $\mathbf{U} \in \Re^{n \times K}$ and $\tilde{\mathbf{U}} \in \Re^{n \times K}$

URGE: UnceRtain Graph Embedding

Step 2: Objective function

$$
\min _{\mathbf{U}, \tilde{\mathbf{U}}}\left\|\mathbf{S}-\mathbf{U} \tilde{\mathbf{U}}^{T}\right\|^{2}+\frac{\lambda}{2}\left(\|\mathbf{U}\|^{2}+\|\tilde{\mathbf{U}}\|^{2}\right)
$$

Negative sampling + asynchronous stochastic gradient algorithm (ASGD)

How to compute the proximity matrix efficiently?

Second-order Proximity: Expected Jaccard Similarity

Jaccard similarity between node u and v on a deterministic graph G :

$$
S_{u v}^{J}=\frac{\left|N_{G}(u) \cap N_{G}(v)\right|}{\left|N_{G}(u) \cup N_{G}(v)\right|}
$$

$N_{G}(x)$: the neighbor set of node x on G.

Second-order Proximity: Expected Jaccard Similarity

Jaccard similarity between node u and v on a deterministic graph G :

$$
S_{u v}^{J}=\frac{\left|N_{G}(u) \cap N_{G}(v)\right|}{\left|N_{G}(u) \cup N_{G}(v)\right|}
$$

$N_{G}(x)$: the neighbor set of node x on G.

Expected Jaccard Similarity (EJS):

$$
S_{u v}^{\mathrm{EJS}}=\sum_{G \in \Omega(\mathcal{G})}\left(S_{u v}^{\mathrm{J}}\right)_{G} \operatorname{Pr}[G]
$$

$\Omega(\mathcal{G})$: the set of all possible worlds of \mathcal{G}.

Computation of EJS

Lemma (A. Stuart, 1998; Z. Zhou, ICDM'13)

Given two nodes u and v of \mathcal{G}, let $X_{u v}=\left|N_{G}(u) \cap N_{G}(v)\right|$ and $Y_{u v}=\left|N_{G}(u) \cup N_{G}(v)\right|$, where G is a possible world of \mathcal{G}. Then,

$$
\mathbf{S}_{u v}^{\mathrm{EJS}}=E\left[\frac{X_{u v}}{Y_{u v}}\right] \approx \frac{E\left[X_{u v}\right]}{E\left[Y_{u v}\right]}-\frac{\operatorname{Cov}\left(X_{u v}, Y_{u v}\right)}{E\left[Y_{u v}\right]^{2}}+\frac{E\left[X_{u v}\right] \operatorname{Var}\left(Y_{u v}\right)}{E\left[Y_{u v}\right]^{3}}
$$

- Z. Zou et al. study the problem of computing EJS between a pair of nodes $\rightarrow \mathcal{O}(d)$
- Z. Zou et al. study the problem of computing EJS between a pair of nodes $\rightarrow \mathcal{O}(d)$
- (Basic method) for each node u on \mathcal{G}, enumerate all 2-hop neighbors, v, and compute $\mathbf{S}_{u v}^{\mathrm{EJS}} \rightarrow \mathcal{O}\left(n d^{2} * d\right)$
- Z. Zou et al. study the problem of computing EJS between a pair of nodes $\rightarrow \mathcal{O}(d)$
- (Basic method) for each node u on \mathcal{G}, enumerate all 2-hop neighbors, v, and compute $\mathbf{S}_{u v}^{\mathrm{EJS}} \rightarrow \mathcal{O}\left(n d^{2} * d\right)$
- (Our solution) compute the EJS for all pair of nodes incrementally (i.e., the whole EJS matrix $\left.\mathbf{S}^{\text {EJS }}\right) \rightarrow \mathcal{O}\left(n d^{2}\right)$

High-order Proximity: Probabilistic Random Walk with Restart

- Random walk (transition procedure) on uncertain graphs (for node u) [VLDB'10]:
(1) generate a possible world G for u;
(2) walk to a neighbor uniformly at random if there exists any neighbors of u in G, otherwise stay at u.

High-order Proximity: Probabilistic Random Walk with Restart

- Random walk (transition procedure) on uncertain graphs (for node u) [VLDB'10]:
(1) generate a possible world G for u;
(2) walk to a neighbor uniformly at random if there exists any neighbors of u in G, otherwise stay at u.

High-order Proximity: Probabilistic Random Walk with Restart

- Random walk (transition procedure) on uncertain graphs (for node u) [VLDB'10]:
(1) generate a possible world G for u;
(2) walk to a neighbor uniformly at random if there exists any neighbors of u in G, otherwise stay at u.
- Probabilistic Transition Matrix, PTM [VLDB'10, IS'15]:

$$
\mathbf{W}_{u v}= \begin{cases}\prod_{(u, q) \in E}\left(1-\mathbf{P}_{u q}\right), & u=v \\ \sum_{G \in \Omega(\mathcal{G}) \wedge(u, v) \in E_{G}} \frac{1}{d_{u}^{G}} \operatorname{Pr}[G], & u \neq v\end{cases}
$$

(E_{G} : edge set of $G ; d_{u}^{G}$: out-degree of node u in G)

High-order Proximity: Probabilistic Random Walk with Restart

- Random walk (transition procedure) on uncertain graphs (for node u) [VLDB'10]:
(1) generate a possible world G for u;
(2) walk to a neighbor uniformly at random if there exists any neighbors of u in G, otherwise stay at u.
- Probabilistic Transition Matrix, PTM [VLDB'10, IS'15]:

$$
\mathbf{W}_{u v}= \begin{cases}\prod_{(u, q) \in E}\left(1-\mathbf{P}_{u q}\right), & u=v \\ \sum_{G \in \Omega(\mathcal{G}) \wedge(u, v) \in E_{G}} \frac{1}{d_{u}^{G}} \operatorname{Pr}[G], & u \neq v\end{cases}
$$

(E_{G} : edge set of $G ; d_{u}^{G}$: out-degree of node u in G)

- Probabilistic Random Walk with Restart, PRWR

$$
\mathbf{S}^{\mathrm{PRWR}}=(1-\alpha) \mathbf{S}^{\mathrm{PRWR}} \mathbf{W}+\alpha \mathbf{I}, \quad(\mathbf{I} \text { is an identity matrix })
$$

Computation of PTM and PRWR

Computation of PTM:

- (Basic method) an existing algorithm $\rightarrow \mathcal{O}\left(n d^{3}\right)$ [IS'15]
- (Our method) further improvement, a hash-based method $\rightarrow \mathcal{O}\left(h n d^{2}\right)$, $h \ll d$.

Computation of PRWR:

- Monte Carlo method $\rightarrow \mathcal{O}\left(n R \frac{1}{\alpha}\right)$
- R : number of walkers;
- $1 / \alpha$: expected length of random paths

Experiments

Tasks: node clustering, node classification and k-NN search

Algorithms:

- Our algorithms:
- URGE EJs : URGE algorithm based on EJS
- URGE ${ }_{\text {prur }}$: URGE algorithm based on PRWR
- Existing embedding algorithms:
- DeepWalk
- LINE
- node2vec ${ }_{p}^{q}$ (node2vec $_{0.25}^{0.25}$ and node2vec ${ }_{4}^{1}$)
- Existing non-embedding algorithms:
- MCL (for deterministic graph clustering)
- pKwikCluster (for uncertain graph clustering)
- uBayes ${ }^{+}$(for uncertain graph classification)
- MostProbPath (for uncertain graph k-NN)

Task 1: Clustering

Dataset: 4 real uncertain Protein-Protein Interaction (PPI) networks ${ }^{1}$ Ground truth: the complex-memberships lists from the MIPS database

Name	\#Nodes	\#Edges	Avg. Prob.
Krogan_core	2,708	7,123	0.68
Krogan_extend	3,672	14,317	0.42
Collins	1,622	9,074	0.78
Gavin	1,855	7,669	0.36

Table: Statistics of the PPI networks.

[^0]
Task 1: Clustering (Cont'd)

- Metric: F1 score based on the confusion matrix (true positive, false positive, true negative and false negative)
- Hierarchical clustering in vector space (embedding-based algorithms)

Task 1: Clustering (Cont'd)

- Metric: F1 score based on the confusion matrix (true positive, false positive, true negative and false negative)
- Hierarchical clustering in vector space (embedding-based algorithms)

Algorithm	Krogan_core	Krogan_extend	Collins	Gavin
DeepWalk	39.21	33.43	55.15	47.33
LINE	38.73	33.07	48.28	44.14
node2vec $_{4}^{1}$	39.30	33.06	52.42	46.17
node2vec 0.25 $_{0.25}$	38.96	33.75	53.23	46.13
MCL	36.01	30.83	57.55	47.84
pKwikCluster	16.94	12.88	24.59	5.65
URGE EJS $^{\text {URGE }}$ PRWR	38.39	30.08	55.61	54.54
Table : F1 scores (\%) for clustering tasks.				

Task 1: Clustering (Cont'd)

- Metric: F1 score based on the confusion matrix (true positive, false positive, true negative and false negative)
- Hierarchical clustering in vector space (embedding-based algorithms)

Algorithm	Krogan_core	Krogan_extend	Collins	Gavin
DeepWalk	39.21	33.43	55.15	47.33
LINE	38.73	33.07	48.28	44.14
node2vec ${ }_{4}^{1}$	39.30	33.06	52.42	46.17
node2vec ${ }_{0.25}^{0.25}$	38.96	33.75	53.23	46.13
MCL	36.01	30.83	57.55	47.84
pKwikCluster	16.94	12.88	24.59	5.65
URGE EJS	38.39	30.08	55.61	54.54
URGE ${ }_{\text {PRWR }}$	44.86	35.58	58.16	52.59

Task 2: Classification

Dataset:

- DBLP (co-authorship network): 45,583 edges, 14,376 papers, 4 classes
- Cora (citation network): 8,365 edges and 2,708 papers, 7 classes *Use the method proposed by P. Boldi et al. [VLDB'12] to do obfuscation.

Other setting:

- k nearest neighbor classifiers (embedding-based algorithms).
- Varying training ratio (T_{R}) from 20% to 80%
- Metric: Micro-F1, Macro-F1.

Task 2: Classification (Cont'd)

Metric	Algorithm	20\%	40\%	60\%	80\%
Micro-F1(\%)	DeepWalk	40.81	49.71	54.33	57.27
	LINE	40.87	47.96	53.26	56.52
	node2vec ${ }_{4}^{1}$	41.25	51.29	55.67	59.27
	node2vec ${ }_{0}^{0.25}$	40.16	49.33	53.53	56.98
	uBayes ${ }^{+}$	32.43	45.13	44.57	57.44
	URGE ${ }_{\text {EJS }}$	58.00	63.31	66.36	69.45
	URGE ${ }_{\text {PRWR }}$	52.16	58.08	61.12	63.97
Macro-F1(\%)	DeepWalk	38.12	48.22	52.95	55.98
	LINE	39.02	46.37	51.70	55.08
	node2vec ${ }_{4}^{1}$	39.42	49.21	53.93	57.69
	node2vec ${ }_{0.25}^{0.25}$	38.11	47.64	51.93	55.37
	uBayes ${ }^{+}$	31.07	42.02	45.03	55.33
	URGE ${ }_{\text {EJS }}$	55.48	61.45	64.49	67.50
	URGE ${ }_{\text {PRWR }}$	49.86	56.41	59.64	62.42

Table: Results of classification on DBLP under different training ratio(\%).

Task 2: Classification (Cont'd)

Metric	Algorithm	20\%	40\%	60\%	80\%
Micro-F1(\%)	DeepWalk	40.81	49.71	54.33	57.27
	LINE	40.87	47.96	53.26	56.52
	node2vec ${ }_{4}^{1}$	41.25	51.29	55.67	59.27
	node2vec ${ }_{0}^{0.25}$	40.16	49.33	53.53	56.98
	$u^{\text {uBayes }}{ }^{+}$	32.43	45.13	44.57	57.44
	URGE ${ }_{\text {EJS }}$	58.00	63.31	66.36	69.45
	URGE ${ }_{\text {PRWR }}$	52.16	58.08	61.12	63.97
Macro-F1(\%)	DeepWalk	38.12	48.22	52.95	55.98
	LINE	39.02	46.37	51.70	55.08
	node2vec ${ }_{4}^{1}$	39.42	49.21	53.93	57.69
	node2vec ${ }_{0.25}^{0.25}$	38.11	47.64	51.93	55.37
	$u^{\text {Bayes }}{ }^{+}$	31.07	42.02	45.03	55.33
	URGE ${ }_{\text {EJS }}$	55.48	61.45	64.49	67.50
	URGE ${ }_{\text {PRWR }}$	49.86	56.41	59.64	62.42

Table: Results of classification on DBLP under different training ratio(\%).

Efficiency

Datasets: DBLP, Cora, and BlogCatalog (relationships of the bloggers, 10K nodes and 665 K edges)
Algorithms:

- EJS: BasicEJS vs FastEJS (6+ times faster)
- PTM: BasicPTM vs DP hash (20+ times faster)

(c) EJS

(d) PTM

Conclusion

- Formulate the problem of uncertain graph embedding.
- Propose URGE, a proximity preserved embedding method for uncertain graphs.
- Develop efficient algorithms for two kinds of proximities (EJS and PRWR).
- Detailed evaluation on various tasks demonstrates the efficiency and effectiveness of the URGE solution.

Our team

THE UNIVERSITY OF HONG KONG

Dr. Reynold Cheng (ckcheng@cs.hku.hk)

Jiafeng

Zhipeng

Yixiang

Siqiang

Thanks!

Q\&A

[^0]: ${ }^{1}$ http://www.nature.com/nmeth/journal/v9/n5/full/nmeth. 1938.html

