
On Embedding Uncertain Graphs

Jiafeng Hu Reynold Cheng Zhipeng Huang Yixiang Fang Siqiang Luo
Department of Computer Science, The University of Hong Kong

{jhu, ckcheng, zphuang, yxfang, sqluo}@cs.hku.hk

ABSTRACT

Graph data are prevalent in communication networks, social
media, and biological networks. These data, which are often
noisy or inexact, can be represented by uncertain graphs,
whose edges are associated with probabilities to indicate the
chances that they exist. Recently, researchers have studied
various algorithms (e.g., clustering, classification, and k-NN)
for uncertain graphs. These solutions face two problems:
(1) high dimensionality: uncertain graphs are often highly
complex, which can affect the mining quality; and (2) low
reusability, where an existing mining algorithm has to be
redesigned to deal with uncertain graphs on different tasks.
To tackle these problems, we propose a solution called URGE,
or UnceRtain Graph Embedding. Given an uncertain graph
G, URGE generates G’s embedding, or a set of low-dimensional
vectors, which carry the proximity information of nodes in
G. This embedding enables the dimensionality of G to be
reduced, without destroying node proximity information. Due
to its simplicity, existing mining solutions can be used on
the embedding. We investigate two low- and high-order node
proximity measures in the embedding generation process,
and develop novel algorithms to enable fast evaluation.

To our best knowledge, there is no prior study on the use of
embedding for uncertain graphs. We have further performed
extensive experiments for clustering, classification, and k-NN
on several uncertain graph datasets. Our results show that
URGE attains better effectiveness than current uncertain
data mining algorithms, as well as state-of-the-art embedding
solutions. The embedding and mining performance is also
highly efficient in our experiments.

1 INTRODUCTION

Graph data are often found in important and emerging do-
mains, including social media, communication networks, and
biological databases. This rich information source, which
describes complex relationships among objects, has attracted
a lot of interest from research and industry communities.
Mining and analysis solutions, such as clustering [32], clas-
sification [3], and embedding [13, 30, 36], allow important
knowledge and insight to be discovered from graphs.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CIKM’17, November 6–10, 2017, Singapore.

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
DOI: http://dx.doi.org/10.1145/3132847.3132885

b

a

0.9

0.8

0.1

0.6 0.2

c

d

(a)

b

a

c

d

(b)

Figure 1: (a) An uncertain graph G. (b) A possible
world G = {(a, d), (b, d), (b, c)} of G with probability
Pr[G] = PadPbdPbc(1 − Pab)(1 − Pcd) = 0.1 × 0.8 × 0.6 ×
0.1× 0.8 = 0.00384.

In many situations, graph data are noisy, inexact, and
inaccurate. This can be due to various reasons, such as
the error occurred during the data collection process, im-
perfection of machine-learning techniques for generating a
graph, or deliberate hiding of information for privacy pro-
tection [21]. For example, in the Protein-Protein Interaction
(PPI) networks, each protein is represented as a node, and
an edge between two nodes depicts an interaction between
them. However, whether an interaction exists is not cer-
tain, because it is derived through error-prone experiments
or statistical models [22]. As another example, in influence
maximization, an influence graph is used to indicate whether
a social network user (node) can affect another one [20]. An
edge from node a to b indicates that a can exert influence on
b (e.g., to buy an electronic product). Since it is not entirely
clear whether a can indeed influence b, the existence of edge
(a, b) is probabilistic. Other examples of graph uncertainty
include the modeling of reliability between nodes in mobile
ad-hoc networks [4], as well as the use of graph obfuscation
for privacy protection [5].

A common model that captures the inexact information
of graph data is the uncertain graph model. As illustrated
in Fig. 1a, each edge is associated with a probability value,
which specifies the chance that the edge exists. Let us sup-
pose that Fig. 1a is a PPI network. Then, the probability
on the edge (a, b) indicates that proteins a and b interact
with a probability of 0.9. In recent years, researchers have
studied various problems on the uncertain graph model, in-
cluding clustering [21, 24], classification [8], k-NN queries [31],
structural-similarity computation [10, 45], dense subgraph re-
trieval [6, 15, 27], and frequent subgraph mining [44, 46].
In general, this kind of solutions takes an existing non-
probabilistic (or deterministic) graph algorithm and modify
it to address the probability information of graph edges.
Although they have been shown to outperform a graph solu-
tion that does not handle uncertain graphs, they have two
shortcomings.

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

157

• High dimensionality. An uncertain graph, containing nu-
merous nodes, edges, and probabilities, is highly complex.
If the graph is also sparse, it could carry a large amount of
noise, and the quality of mining the graph can be affected.
• Low reusability. As discussed before, to develop a mining
algorithm (say, uncertain graph clustering [21]) on uncertain
graphs, a typical way is to modify its deterministic version.
This methodology is highly non-trivial; for instance, new
index structures and algorithms have to be developed to
compute probabilistic information efficiently. Moreover, it
is not easy to develop an uncertain graph mining algorithm
by extending another one. For example, an index developed
for uncertain graph clustering may not be used for uncertain
graph classification. Hence, given a new mining algorithm A
for deterministic graphs, extending A to support uncertain
graphs can incur a huge amount of effort.

The URGE solution. To tackle the aforementioned
problems, we propose an uncertain data mining paradigm,
called UnceRtain Graph Embedding (or URGE in short).
Given an uncertain graph G, URGE generates its respective
embedding, essentially a set of low-dimensional vectors that
carry the proximity information of nodes in G. A salient
feature of URGE is that node proximity is preserved under
the Possible World Semantics (or PWS), which is a correct
interpretation of uncertain graphs [8, 10, 21, 24, 31, 45].
Fig. 1b illustrates a possible world G of G, which only contains
edges (a, d), (b, d), and (b, c), and exists with a probability of
0.00384. The proximity between two nodes (say, a and b) can
then be computed based on the sum of the probabilities of
the possible worlds in which a and b are close to each other.
Through the use of proximity measures designed for uncertain
graphs, we are able to preserve the similarity between a and
b in the embedding space.

Because URGE represents G as a set of low-dimensional
vectors, the high-dimensionality issue of G is alleviated. As
shown in our experiments, the mining effectiveness of URGE
is better than other uncertain data mining algorithms. More-
over, URGE demonstrates higher reusability than its un-
certain data mining counterparts, because its vector-based
representation is readily used by existing deterministic graph
mining solutions (e.g., [3, 32]).

The topic of embedding graphs has been recently stud-
ied [13, 30, 36]. However, these solutions are not designed for
uncertain graph models. A core part of URGE is to compute
the proximity matrix of G, which is an n × n matrix that
captures the similarity between each pair of n nodes in G.
Here we consider two major classes of proximity measures,
namely Expected Jaccard Similarity (or EJS) [16] and Prob-
abilistic Random Walk with Restart (or PRWR) [31]. The
EJS is a second-order measure, which is suitable for dense
graphs whose nodes are close to each other, while the PRWR
is a high-order metric, which captures the global structure
of a graph. Both measures follow the PWS notion. Due
to the huge overhead of computing the proximity matrix,
we have designed efficient and approximate algorithms with
accuracy guarantees. Particularly, our solution for computing
the proximity matrix for EJS is O(d) times faster than a

current solution in [45], where d is the maximum node degree
of G. Our algorithm for the PRWR proximity matrix also
executes O(d/h) times faster than an existing algorithm [10],
where h is the hash set size, with h ≪ d. We also develop a
matrix factorization method based on negative sampling, in
order to derive the embedding from the proximity matrix.

We have conducted experiments on several uncertain graph
datasets for three common applications (namely clustering,
classification, and k-NN search). We compare our solutions
with state-of-the-art graph embedding solutions (namely
DeepWalk [30], LINE [36], and node2vec [13]) and uncer-
tain data mining algorithms. Our results show that URGE
consistently outperforms these solutions. Our algorithms de-
veloped to compute proximity matrices for EJS and PRWR
are also more efficient than the existing ones [10, 45].

The rest of the paper is structured as follows. We review
the related work in Section 2. Section 3 formulates the
problem of uncertain graph embedding and presents the
URGE model. In Section 4, we study proximity matrices.
We optimize the training process in Section 5. In Section 6,
we report our experimental results. Section 7 concludes.

2 RELATED WORK

We now discuss the literature related to (1) querying and
mining of uncertain graphs (Section 2.1) and (2) graph em-
bedding (Section 2.2).

2.1 Uncertain Graphs

Querying and mining over uncertain graphs has been widely
studied in recent years, including query processing, e.g., k-
NN queries [31], structural-similarity computing [10, 45] and
dense subgraph retrieval [6, 15, 27], as well as graph mining
tasks, e.g., frequent subgraph mining [44, 46], clustering [21,
24] and classification [8]. [19] is a survey on mining uncertain
graphs.

Potamias et al. [31] study the k-NN problem over uncertain
graphs. They propose several distance functions between
nodes that extend shortest path distances from deterministic
graphs and devise sampling based algorithms to answer k-NN
queries efficiently.

Zou and Li [45] study several structural-context similarities
for uncertain graphs, including the Jaccard similarity [16], the
Dice similarity [9] and the cosine similarity. In this paper, we
also investigate the Jaccard similarity for uncertain graphs,
and propose an O(nd2) algorithm which is O(d) times faster
than directly applying their algorithm, where n is the number
of nodes in the uncertain graph G and d is the maximum
node degree of G.

Kollios et al. [21] focus on the node clustering task on
uncertain graphs, and propose a new definition of clustering
based on expected edit distance, as well as algorithms for
clustering. In addition, Dallachiesa et al. [8] focus on the
node classification task on uncertain graphs and propose two
algorithms based on iterative probabilistic labeling which
incorporate the uncertainty of edges in their operation.

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

158

Different from existing works, we adopt the embedding
paradigm, i.e., learning a low-dimensional vector for each
node, for uncertain graphs, which can serve a wide range
of tasks, e.g., clustering, classification, k-NN search, link
prediction, etc. Experimental results in Section 6 demon-
strate that our solution, URGE, performs better than those
algorithms customized for clustering [21], classification [8]
and k-NN [31].

2.2 Graph Embedding

Another kind of work related is graph embedding (a.k.a.,
dimension reduction), which aims at learning latent repre-
sentations associated with nodes. Graph embedding can be
used for many graph analysis tasks, e.g., node classification,
clustering, link prediction, etc.

Traditional techniques [2, 33, 38] usually rely on computing
the leading eigenvectors of the affinity matrices constructed
from the feature vectors of nodes. As pointed out in [13],
these methods suffer from both computational and statistical
performance drawbacks.

Recently, inspired by Skip-Gram [26], a widely adopted
language model which optimizes the co-occurrence likeli-
hood among words that appear within a window of a sen-
tence, many graph embedding models have been proposed to
learn effective representations, e.g, DeepWalk [30], LINE [36],
node2vec [13], etc. Particularly, DeepWalk considers a graph
as a document, and truncated random walks on the graphs as
sentences in the document. Hence, the Skip-Gram model can
be adopted to learning representations on graphs. node2vec
extends DeepWalk by designing a flexible biased random walk
procedure based on second-order random walks. Different
from DeepWalk and node2vec which utilize random walk to
capture the proximities between nodes, LINE uses an explicit
objective function to preserve both first-order and second-
order proximities between nodes in the representation space.
Specifically, LINE learns two vectors for the first-order and
second-order proximities separately and then concatenates
them to form the final representation.

However, all those existing embedding models are not
designed for uncertain graphs. In this paper, we propose an
embedding method, URGE, customized to uncertain graphs,
by treating uncertainty as a first-class citizen.

Other related works like HOPE [28] which focuses on pre-
serving asymmetric transitivity in directed graph embedding
and SDNE [41] which is a semi-supervised deep model that
captures the highly non-linear graph structure, cannot sup-
port uncertain graphs.

3 UNCERTAIN GRAPH EMBEDDING

An uncertain graph is denoted by G = (V,E,P), with node
set V , edge set E, and probability set P. Pe (or Puv where
e = (u, v)) is the probability associated with the edge e ∈ E,
which is the probability that edge e exists in the graph.

Under the Possible World Semantics (or PWS) [18, 21, 31,
43], an uncertain graph G represents a probability distribution
over all its possible worlds. In particular, a possible world

n

n n

Step 1: Compute the

proximity matrix S

Step 2: Compute U

based on Eq. 2 Clustering

Classification

k-NN

...

n

n n

u
n

ce
rtain

 g
ra

p
h

K

Figure 2: Flowchart of URGE

of G is a deterministic graph G = (V,EG), where EG ⊆ E.
Following previous work for uncertain graphs [31, 44], we also
assume that the existence probabilities of edges are mutually
independent. Hence, the probability of a possible world G is
defined as:

Pr[G] =
∏

e∈EG

Pe

∏

e∈E\EG

(1−Pe) (1)

As shown in Fig. 1 (in Section 1), Fig. 1a is an uncertain
graph G and Fig. 1b is one of its possible worlds G.

Definition 3.1 (Uncertain Graph Embedding). Given an
undirected uncertain graph 1 G, the problem of uncertain
graph embedding aims to represent each node v ∈ V by
a vector in a low-dimensional space ℜK , i.e., learning an
embedding matrix U ∈ ℜn×K , where n = |V | is the number
of nodes in G and K ≪ n is the number of dimensions in the
embedded space and the i-th row, ui, is the embedding vector
of the i-th node. In the embedded space ℜK , the proximities
among nodes in the original uncertain graph G are preserved.

3.1 The URGE Model

In this subsection, we present our solution, URGE, for un-
certain graph embedding, which can preserve the proximities
among nodes well in the embedded space.

Given an uncertain graph G, let S ∈ ℜn×n be a proximity
matrix of G, where Suv is the proximity between node u and
v. Yang et al. [42] have proved that DeepWalk, a leading em-
bedding method, is inherently a matrix factorization process
whose power on embedding has been shown in [1, 28, 39, 42].
In this paper, we adopt the matrix factorization model to
preserve the proximity. That is, we wish to find matrices
U ∈ ℜn×K and Ũ ∈ ℜn×K such that:

min
U,Ũ

‖S−UŨT ‖2 +
λ

2
(‖U‖2 + ‖Ũ‖2), (2)

where ‖ · ‖ is the L2 norm, and the factor λ controls the
weight of the regularization term. In this paper, as used
in [39], we take the learnt representations U as features.

Fig. 2 is the flowchart of the URGE model. URGE consists
of two steps, described as follows:

(1) compute the proximity matrix S for the given uncer-
tain graph G.

(2) apply matrix factorization to get the embedded space
U.

1In this paper, we focus on undirected uncertain graphs. Our solution
can be extended to directed uncertain graphs easily.

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

159

Next, we investigate two common proximity measures for
uncertain graphs, as well as their efficient computation, in
Section 4. We then describe how to optimize the loss function
(Eq. 2) efficiently in Section 5.

4 PROXIMITY MATRIX FOR

UNCERTAIN GRAPHS

Both low- and high-order node proximity measures have
been studied in graph embedding. Specifically, LINE [36]
focuses on preserving the low-order proximity, e.g., first-
order relationship (edges in graph) and second-order rela-
tionship (2-hop relationship), since it can reflect the local
structure among nodes well. Meanwhile, other works like
DeepWalk [30] and node2vec [13] focus on preserving the
high-order proximity to capture the global structure among
nodes. In this section, we investigate both low- and high-order
proximity measures. In particular, we study a second-order
proximity (the expected Jaccard similarity) in Section 4.1
and a high-order proximity (probabilistic random walk with
restart) in Section 4.2. Other proximity measures can also
be adopted in the URGE model.

4.1 Expected Jaccard Similarity

The Jaccard similarity [16] has been widely used to measure
the similarity between nodes of graphs. Particularly, given
a deterministic undirected graph G, the Jaccard similarity
(SJ

uv)G between two nodes u and v of the graph G, is defined
as follows2:

(SJ
uv)G =

|NG(u) ∩NG(v)|

|NG(u) ∪NG(v)|
, (3)

where NG(x) denotes the neighbor set of node x on G.
The Jaccard similarity defined on deterministic graphs does

not make sense on uncertain graphs. Given an uncertain
graph G, the Jaccard similarity between two nodes u and v
of G may be different on different possible worlds of G due
to the difference of neighbor sets.

Definition 4.1 (Expected Jaccard Similarity [45]). Given an
undirected uncertain graph G, the expected Jaccard similarity
(EJS for short) between two nodes u and v of G is defined as
follows:

SEJS
uv =

∑

G∈Ω(G)

(SJ
uv)GPr[G]

=
∑

G∈Ω(G)

|NG(u) ∩NG(v)|

|NG(u) ∪NG(v)|
Pr[G]

(4)

where Ω(G) is the set of all possible worlds of G.

In other words, SEJS
uv = E[(SJ

uv)G] = E
[
|NG(u)∩NG(v)|
|NG(u)∪NG(v)|

]
,

where the expectation is computed over all possible worlds
G that are chosen at random from Ω(G) with probability
Pr[G].

Zou and Li [45] proposed an approximate algorithm to
compute SEJS

uv , the EJS between node u and v, in O(d) time,
where d is the maximum node degree of G, based on following
two lemmas.

2The similarity is required to be 0 if the denominator is 0.

Lemma 4.2. [35] Let X and Y be two nonnegative random
variables such that P{X ≤ Y } = 1 and E[Y] > 0. If Y = 0,
we require X/Y = 0. Then based on the second order Taylor
expansion we have:

E

[
X

Y

]
≈

E[X]

E[Y]
−

Cov(X,Y)

E[Y]2
+

E[X]Var(Y)

E[Y]3
. (5)

Lemma 4.3. [45] Given an uncertain graph G and two
nodes u and v of G, let Xuv = |NG(u) ∩NG(v)| and Yuv =
|NG(u) ∪NG(v)|, where G is a possible world of G chosen at
random from Ω(G) with probability Pr[G]. Then,

E[Xuv] =
∑

w∈(NG(u)∩NG(v))

Pu∧v(w), (6a)

E[Yuv] =
∑

w∈(NG(u)∪NG(v))

(1− Pū∧v̄(w)), (6b)

Var(Yuv) =
∑

w∈(NG(u)∪NG(v))

Pū∧v̄(w)(1− Pū∧v̄(w)),

(6c)

Cov(Xuv , Yuv) =
∑

w∈(NG(u)∩NG(v))

Pu∧v(w)Pū∧v̄(w), (6d)

SEJS
uv = E

[
Xuv

Yuv

]
≈
E[Xuv]

E[Yuv]
−

Cov(Xuv , Yuv)

E[Yuv]2
+

E[Xuv]Var(Yuv)

E[Yuv]3
,

(6e)

where NG(x) denotes the neighbor set of node x on G, Pu∧v(w) =
PuwPvw is the probability that both edges (u,w) and (v, w)
exist, and Pū∧v̄(w) = (1−Puw)(1−Pvw) is the probability
that both edges (u,w) and (v, w) do not exist.

Given any pair (u, v) of nodes, the EJS between u and v,
SEJS
uv , can be computed by visiting all neighbors of u and v

once. Since [45] only focuses on computing the EJS for a pair
of nodes, it is still not clear on how to compute the whole
EJS matrix, SEJS, efficiently. A naive way is to enumerate all
2-hop neighbors, v, for each node u on G and compute SEJS

uv .
The time complexity is O(nd3), where n is the number of
nodes in G, since there are up to O(nd2) pairs of nodes on G.

In the following, we propose an algorithm called FastEJS,
which can compute the EJS for all pair of nodes simulta-
neously (i.e., the whole EJS matrix SEJS) in O(nd2) time,
which is O(d) times faster than directly applying the solution
proposed in [45].

The key idea of FastEJS is to transform union operators
in Eq. 6b and Eq. 6c to intersection operators, which can
be done by replacing Pū∧v̄(w) with (1−Puw)(1−Pvw) in
Eq. 6b and Eq. 6c. Then, we have 3:

E[Yuv] =
∑

w∈(NG(u)∪NG(v))

(Puw +Pvw − Pu∧v(w))

=
∑

w∈NG(u)

Puw +
∑

w∈NG(v)

Pvw −
∑

w∈(NG(u)∩NG(v))

Pu∧v(w)

=
∑

w∈NG(u)

Puw +
∑

w∈NG(v)

Pvw − E[Xuv]

(7)

3For any node u ∈ V on G, if node w /∈ NG(u), Puw = 0.

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

160

and,

V ar(Yuv) =
∑

w∈NG(u)

Puw +
∑

w∈NG(v)

Pvw −
∑

w∈NG(u)

P2
uw −

∑

w∈NG(v)

P2
vw

︸ ︷︷ ︸
part A

−
∑

w∈(NG(u)∩NG(v))

Pu∧v(w)(3− 2Puw − 2Pvw + Pu∧v(w))

︸ ︷︷ ︸
part B

.

(8)

Furthermore, for each node w ∈ V , we observe that for
each pair (u, v) with {u, v} ⊆ NG(w) and u 6= v, Pu∧v(w)
contributes to E[Xuv] (Eq. 6a), E[Yuv] (Eq. 7) and V ar(Yuv)
(Eq. 8), and Pu∧v(w) Pū∧v̄(w) contributes to Cov(Xuv, Yuv)
(Eq. 6d). In addition, for each node u ∈ V ,

∑
w∈NG(u) Puw

and
∑

w∈NG(u) P
2
uw can be computed in O(d) time.

Based on the above analysis, the pseudocode of FaseEJS
is shown in Alg. 1. FastEJS computes SEJS as follows: after
initialization (lines 1-2), for each node w ∈ V , we first record
the sum (Ψ(w)) and square sum (Υ(w)) of probabilities over
all edges starting from w (line 5); then we enumerate all
possible pairs (u, v) with {u, v} ⊆ NG(w) and u 6= v, and for
each candidate pair e = (u, v), update the corresponding val-
ues of µx(e) (i.e. E[Xuv]), σy(e) (i.e. V ar(Yuv)) and σxy(e)
(i.e. Cov(Xuv, Yuv)) according to Eq. 6a, Eq. 8 part B, and
Eq. 6d respectively (lines 7-11). Finally, for each candidate
pair e = (u, v) of nodes being computed, we calculate µy(e)
(i.e. E[Yuv]), update σy(e) (i.e. V ar(Yuv)) and compute SEJS

uv

based on Eq. 7, Eq. 8 (part A) and Eq. 6e respectively (lines
13-15). It is easy to prove that the time complexity of Alg. 1
is O(nd2).

Algorithm 1: FastEJS(G)

Input: An uncertain graph G = (V,E,P)
Output: SEJS, the expected Jaccard similarity matrix

1 SEJS = 0n,n, µx = ∅, µy = ∅, σy = ∅, σxy = ∅;

2 Ψ = ∅, Υ = ∅;

3 for each node w ∈ V do
4 T = NG(w); /* the neighbor set of w */

5 Ψ(w) =
∑

u∈T Pwu, Υ(w) =
∑

u∈T P2
wu;

6 for each pair e = (u, v) ∈ T × T and u 6= v do

7 if e /∈ µx then
8 Initialize µx(e), µy(e), σy(e), σxy(e) to 0;

9 µx(e) = µx(e) + Pu∧v(w);

10 σy(e) = σy(e)− Pu∧v(w)(3 -2Puw

-2Pvw+Pu∧v(w));

11 σxy(e) = σxy(e) + Pu∧v(w)Pū∧v̄(w);

12 for each pair e = (u, v) ∈ µx do

13 µy(e) = Ψ(u) + Ψ(v)− µx(e);

14 σy(e) = σy(e) + Ψ(u) + Ψ(v)−Υ(u)−Υ(v);

15 SEJS
uv =

µx(e)
µy(e)

−
σxy(e)

µy(e)2
+

µx(e)σy(e)

µy(e)3
;

16 return SEJS;

4.2 Probabilistic Random Walk with

Restart

In this subsection, we first introduce the transition procedure
between nodes on uncertain graphs and then present the
probabilistic random walk with restart proximity.

4.2.1 Probabilistic Transition Matrix. Since each edge is
associated with an existence probability in G, the definition
of transition probability from one node to another is different
from the one on deterministic graphs. In this paper, we follow
the definition of the transition procedure on uncertain graphs
proposed in [31]. Specifically, for each node u, the transition
procedure is defined as follows: 1) generate a possible world
G for u; 2) walk to a neighbor uniformly at random if there
exists any neighbors of u in G, otherwise stay at u.

Based on the above transition procedure, we now give the
formal definition of the probabilistic transition matrix which
describes the transition probability from one node to another.

Definition 4.4 (Probabilistic Transition Matrix [10, 31]).
Given an uncertain graph G = (V,E,P) and its possible
world set Ω(G), the probabilistic transition matrix (PTM for
short) W is defined as:

Wuv =

{ ∏
(u,v)∈E(1−Puv), u = v∑
G∈Ω(G)∧(u,v)∈EG

1
dGu

Pr[G], u 6= v
(9)

where EG is the edge set of the possible world G and dGu is
the out-degree of node u in G.

Since the number of possible worlds is exponential, the
time cost for computing the PTM of G, W, is extremely high
if we directly follow Definition 4.4. How to calculate the
PTM efficiently? Next, we first show an existing solution
proposed in [10]. Then, we propose a faster algorithm to
further improve the efficiency.

Let St(u) be a star graph of node u extracted from G by
remaining edges associated with u, |St(u)| be the number of

edges in St(u), and the combination probability Φ
(
E
i

)
denote

the probability that i edges exist in an edge set E with |E|
edges. The summation of transition probabilities from node
u to v on those possible worlds of G with out-degree being

i + 1 (0 ≤ i ≤ |St(u)| − 1) is 1
i+1

PuvΦ
(
St(u)\(u,v)

i

)
. Based

on this observation, Du et al. [10] derived another formula
for Wuv (u 6= v) from the perspective of summing up the
transition probabilities over all different values of out-degree
from 1 to |St(u)|:

Wuv = Puv

|St(u)|−1∑

i=0

1

i+ 1
× Φ

(St(u) \ (u, v)

i

)
. (10)

Thus, the key problem of computing Wuv is to compute
the combination probability Φ efficiently. For any edge set
E={e1, · · · , e|E|}, let Ej={e1, · · · , ej} (1 ≤ j ≤ |E|). [10]

devised a dynamic programming method to compute Φ
(
E
i

)

in quadratic time based on the following recursion equation:

Φ
(Ej
i

)
=

Φ
(Ej−1

i

)
(1−Pej), i = 0

Φ
(Ej−1

i−1

)
Pej , i = j

Φ
(Ej−1

i−1

)
Pej +Φ

(Ej−1

i

)
(1−Pej), others

(11)

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

161

where Pej is the existence probability of edge ej on G, 0 ≤

i ≤ j, and 1 ≤ j ≤ |E|. By initializing Φ
(
∅
0

)
to 1, Φ

(
St(u)\(u,v)

i

)

(i = 0, . . . , |St(u)|−1) can be computed in O(d2) time, where
d is the out-degree of node u on G.

After getting Φ
(
St(u)\(u,v)

i

)
for i = 0, . . . , (|St(u)|−1), Wuv

can be computed in linear time based on Eq. 10. Then, the
probabilistic transition probabilities of all edges starting
from node u, i.e., Wu∗, can be computed straightforwardly
in O(d3) time by computing Wuv for each pair of edges 4.

In what follows, we propose a hash-based algorithm called
DP hash, which computes approximate Wu∗, denoted as

W̃u∗, in O(hd2) time where h is the size of the hash set,
with h ≪ d. The key idea is that, for two edges (u, vk) and
(u, vt) which start from node u, if their existence probabilities
are very close, then their probabilistic transition probabilities
(Wuvk and Wuvt) will also be very close. In the extreme case,
if their existence probabilities are the same (Puvk = Puvt),
then their probabilistic transition probabilities are the same
too (Wuvk = Wuvt). Hence, after dividing the existence
probability interval (i.e. (0, 1]) into h slots, when computing
Wuvk , we first check whether there is an edge (u, vt) with
similar existence probability (e.g., mapping to the same slot)

has been computed. If so, we directly set W̃uvk as Wuvt ;

otherwise compute W̃uvk based on Eq. 11 and Eq. 10. Alg. 2
is the pseudocode of the DP hash algorithm. Since each hash
slot is computed at most once, the time complexity of Alg. 2
is O(hd2).

Algorithm 2: DP hash(St(u), h)

Input: The star graph of node u in G with edges

(u, v1), · · · , (u, v|St(u)|) and h, the size of the hash set
Output: Wu∗, the probabilistic transition probabilities of

all edges starting from u
1 if St(u) contains only one edge (u, v1) then

2 return W̃uv1 = Puv1 ;

3 Initialize H[0...h− 1] = false, Ψ = ∅;

4 for each edge (u, vk) ∈ St(u) do
5 id = Round(Puvk · h); /* map Puvk to a hash slot */

6 if H[id] is true then

7 W̃uvk = Ψ[id];

8 else

9 Compute Φ
(
St(u)\(u,vk)

i

)
(i=0...|St(u)|-1) based on

Eq. 11;

10 Compute W̃uvk = Wuvk based on Eq. 10;

11 H[id] = true, Ψ[id] = W̃uvk ;

12 return W̃u∗;

Theorem 4.5. For any edge (u, vk) ∈ St(u), suppose the
approximate value of the probabilistic transition probability

from node u to vk returned by Alg. 2 is W̃uvk . The accuracy

loss can be bounded as: |Wuvk − W̃uvk | <
1
h
.

4[10] also proposed an incremental dynamic programming algorithm.
However, practically it returns answers with unacceptable precision
loss. Hence, we omit the comparison with it.

Proof. There are two cases to obtain W̃uvk based on

whether H[id] is true or not (line 6). If H[id] is false, W̃uvk

is obtained based on Eq. 10 directly (lines 9-11), i.e., W̃uvk =
Wuvk . Then, the inequation holds.

Otherwise, W̃uvk is obtained from other recorded prob-
abilistic transition probability (say, Wuvt) since Puvt and
Puvk are mapped to the same hash slot (line 7). Then, let
ek (resp. et) denote the edge (u, vk) (resp. edge (u, vt)) and
m = |St(u)|. We have:

|Wuvk − W̃uvk | = |Wuvk −Wuvt |

=

∣∣∣∣∣Puvk

m−1∑

i=0

1

i+ 1
Φ
(St(u) \ ek

i

)
−Puvt

m−1∑

i=0

1

i+ 1
Φ
(St(u) \ et

i

)∣∣∣∣∣

=

∣∣∣∣∣Puvk

(
m−2∑

i=0

1

i+ 1
Φ
(St(u) \ {ek, et}

i

)
(1−Puvt)

+

m−2∑

i=1

1

i+ 1
Φ
(St(u) \ {ek, et}

i

)
Puvt

)

−Puvt

(
m−2∑

i=0

1

i+ 1
Φ
(St(u) \ {ek, et}

i

)
(1−Puvk)

+

m−2∑

i=1

1

i+ 1
Φ
(St(u) \ {ek, et}

i

)
Puvk

)∣∣∣∣∣

=

∣∣∣∣∣(Puvk −Puvt)

m−2∑

i=0

1

i+ 1
Φ
(St(u) \ {ek, et}

i

)∣∣∣∣∣
(12)

Since
∑m−2

i=0 Φ
(
St(u)\{ek,et}

i

)
= 1, we have:

m−2∑

i=0

1

i+ 1
Φ
(St(u) \ {ek, et}

i

)
≤ 1, and (13a)

|Wuvk − W̃uvk | ≤ |(Puvk −Puvt)| <
1

h
. (13b)

�

Based on Alg. 2, the PTM of G can be computed inO(hnd2)
time by invoking Alg. 2 for each node u ∈ V .

4.2.2 Probabilistic Random Walk with Restart. Random
walk with restart (RWR) [29] is a widely adopted proximity
measure, due to its ability to capture the global structure
of the graph. RWR proximity from node u to node v, is the
stationary probability for a random walker starting from u to
reach v after infinite time; at any transition the random walk
restarts at u with probability α (0 < α < 1) and moves to a
random neighbor with probability (1 − α). The stationary
probability of reaching another node v from u reflects how
close u is to v with respect to the graph structure.

Given an uncertain graph G, the probabilistic random walk
with restart (PRWR) is defined as the RWR based on the
PTM. Let SPRWR be the PRWR proximity matrix, it can be
computed iteratively using the following formula:

SPRWR = (1− α)SPRWRW + αI, (14)

where W is the PTM and I is an identity matrix.
Given the PTM, Monte Carlo methods can be used to

simulate the random walk process [11, 23]. Particularly, we

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

162

simulate R independent random walkers starting from u and
taking L steps, where L follows a geometric distribution
Pr[L = i] = α(1 − α)i, i = {0, 1, 2...} with α as the restart
probability. Denote by Rx the number of times the walker
ends at x. Then, the PRWR of node x in the view of u (SPRWR

ux)
can be approximated by the probability that the random

walker ends at x, i.e., S̃PRWR
ux = Rx

R
. Based on the Hoeffding

Inequality [14], the approximate PRWR can be bounded as:

Pr[|SPRWR
ux − S̃PRWR

ux | ≥ ǫ] ≤ 2 exp(−2Rǫ2), for any ǫ > 0.
Given the PTM, SPRWR can be computed in O(nR 1

α
) time

using the above Monte Carlo method, where R is the number
of walkers, and 1/α is the expected length of random paths.

5 OPTIMIZING THE TRAINING

PROCESS

Given the proximity matrix S, directly optimizing the loss
function (Eq. 2) is time consuming, because there are n2

entries in S and we need to calculate the gradient for each
entry (a pair of nodes (u, v), {u, v} ⊆ V). To speed up the
training process, inspired by the negative sampling approach
proposed in [26], which samples a small number of negative
objects to enhance the influence of positive objects, we define
the loss function for each pair (u, v) of objects with non-zero
proximity Suv as follows:

(Suv −UuŨ
T
v)2 +

λ

2
(‖Uu‖

2 + ‖Ũv‖
2)

+
k∑

i=1

Eui∼Pn(u)((Suui −UuŨ
T
ui

)2 +
λ

2
(‖Uu‖

2 + ‖Ũui‖
2))

(15)

where k is the times of sampling, Pn(u) ∝ d
3/4
u as proposed

in [26], and du is the out-degree of node u. We adopt the
asynchronous stochastic gradient algorithm (ASGD)[17] for
optimizing Eq. 15. In each step the ASGD algorithm samples
a mini-batch of edges and then updates the model parame-
ters.

6 EXPERIMENTAL RESULTS

We have evaluated URGE over three common uncertain
graph mining tasks: node clustering, node classification, and
k-NN search. For all these tasks, we consider the following
embedding algorithms:

• DeepWalk [30]5, which learns K-dimensional feature
representations by simulating uniform random walks.

• LINE [36]6 is an embedding method that preserves first-
and second-order proximity between nodes. For each node, it
learns two vectors for the first-order (K/2 dimensions) and
second-order (K/2 dimensions) proximities separately, and
then concatenates them.

• node2vecqp [13]7 extends DeepWalk to exploit homophily
and structural roles for node embedding based on a biased
random walk procedure. Here p and q are the return and
in-out parameters respectively. Note that DeepWalk is a

5https://github.com/phanein/deepwalk
6https://github.com/tangjianpku/LINE
7https://github.com/aditya-grover/node2vec

special case of node2vec with p = 1 and q = 1. We perform
experiments for both node2vec0.250.25 and node2vec14, which are
the best values of p and q as suggested by the authors of [13].

• URGEEJS is our URGE solution based on EJS.
• URGEPRWR is our URGE algorithm based on PRWR. To

compute SPRWR, we set the size of hash set h = 100, walkers
per node R = 5000 and restart probability α = 0.15.

In the methods above, the dimension K is 128 by default,
as used in [13, 30, 36]. For DeepWalk and node2vec, we use
the typical values used in [13], i.e., 10 walkers per node, walk
length l = 80, context size k = 10. For LINE, we use the
default training settings, i.e., starting value of the learning
rate ρ0 = 0.025 and total number of training samples T =
100M for both first-order and second-order representations.
Unless otherwise stated, the number of negative samples is 3,
and the total number of training samples T = 100M .

We have also compared the effectiveness of the above
solutions with representative uncertain data mining solutions,
namely, MCL [40] and pKwikCluster [21] (for clustering);
uBayes+ [8] (for classification); and MostProbPath [31] (for
k-NN). We will describe settings of these solutions later.

All the experiments are conducted on a 16GB memory
machine with Intel(R) Core(TM) i7 CPU@2.3 GHz.

6.1 Clustering

We first conduct clustering tasks for four real Protein-Protein
Interaction (PPI) networks8 (two proteins are linked if it
is likely that they interact and all interactions are labeled
with probabilities (confidence) by biologists): 1) Krogan core:
the core interaction dataset from [22] with all edges have
probability no less than 0.27 and about one fourth of the
edges with probability greater than 0.98; 2) Krogan extend:
the extended interaction dataset from [22] which contains
less reliable interactions than the Krogan core dataset, but
its coverage is higher; 3) Collins: the weighted interaction
map of [7], with mostly high-probability edges; 4) Gavin:
the dataset of [12], with the majority of edges having low
probabilities. The detailed statistics of PPI datasets are
summarized into Table 1.

The PPI networks are one of the benchmark datasets
used in previous works on uncertain graph clustering [21, 24].
In PPI networks, proteins can be grouped into different
complexes. Proteins in the same group will interact with
each other stably. In this group of experiments, we validate
the output of different methods with respect to a known
ground truth. We use the complex-memberships lists from
the MIPS database [25] as the ground truth. MIPS complexes
define co-complex relationships among proteins. Here, a co-
complex relationship is a pair of proteins that both belong
to the same complex. For each PPI network G, during the
evaluation, we only keep the proteins that occur in both G
and MIPS with complex size no less than 3, while the input to
the clustering algorithms is the entire graph G. The detailed

8http://www.nature.com/nmeth/journal/v9/n5/full/nmeth.1938.
html

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

163

https://github.com/phanein/deepwalk
https://github.com/tangjianpku/LINE
https://github.com/aditya-grover/node2vec
http://www.nature.com/nmeth/journal/v9/n5/full/nmeth.1938.html
http://www.nature.com/nmeth/journal/v9/n5/full/nmeth.1938.html

Name #Nodes #Edges Avg. Prob.

Krogan core 2,708 7,123 0.68

Krogan extend 3,672 14,317 0.42
Collins 1,622 9,074 0.78

Gavin 1,855 7,669 0.36

Table 1: Statistics of the PPI networks.

Name #Nodes #Complexes #GT Pairs

MIPS∩Krogan core 639 166 13,492

MIPS∩Krogan extend 885 178 17,101

MIPS∩Collins 765 153 13,552
MIPS∩Gavin 754 148 13,206

Table 2: Ground truth of the PPI networks.

Algorithm Krogan core Krogan extend Collins Gavin

DeepWalk 39.21 33.43 55.15 47.33

LINE 38.73 33.07 48.28 44.14

node2vec14 39.30 33.06 52.42 46.17
node2vec0.250.25 38.96 33.75 53.23 46.13

MCL 36.01 30.83 57.55 47.84

pKwikCluster 16.94 12.88 24.59 5.65

URGEEJS 38.39 30.08 55.61 54.54
URGEPRWR 44.86 35.58 58.16 52.59

Table 3: F1 scores (%) for clustering tasks.

statistics of the ground truth for different PPIs are listed in
Table 2 (GT is short for Ground Truth).

In addition to the embedding algorithms mentioned, we
compare URGE with the following two clustering algorithms:

• MCL [40]9 is a clustering algorithm for deterministic
graphs based on random walks and matrix multiplications.
MCL is used for comparison in previous works on uncertain
graphs [21, 24].

• pKwikCluster [21] is a clustering algorithm for uncertain
graphs.

We evaluate the output clusters in terms of the confusion
matrix, i.e., true positive, false positive, true negative and
false negative. We report the F1 score based on the confu-
sion matrix. For embedding algorithms, after getting the
K-dimensional representations for all nodes, hierarchical clus-
tering (Agglomerative with pooling-func being “mean”) [32]
is adopted to group proteins into different clusters. The
number of clusters for hierarchical clustering is equal to the
number of complexes in MIPS.
Results. Table 3 shows the results of clustering under dif-
ferent algorithms. Note that all existing embedding methods
for deterministic graphs, i.e., DeepWalk, LINE and node2vec
have similar performance. Moreover, MCL performs better
than pKwikCluster on all the PPI networks. We also observe
that URGEPRWR perform better than all other methods, be-
cause it keeps the high-order proximity of these uncertain
graphs well. Meanwhile, URGEEJS is worse than URGEPRWR

on most datasets except Gavin, since it only considers the
second-order proximity.

6.2 Classification

Next, we evaluate our solutions for node classification. We
conduct experiments on synthetic uncertain graphs generated

9http://www.micans.org/mcl

Metric Algorithm 20% 40% 60% 80%

Micro-F1(%)

DeepWalk 40.81 49.71 54.33 57.27
LINE 40.87 47.96 53.26 56.52
node2vec14 41.25 51.29 55.67 59.27

node2vec0.250.25 40.16 49.33 53.53 56.98
uBayes+ 32.43 45.13 44.57 57.44

URGEEJS 58.00 63.31 66.36 69.45

URGEPRWR 52.16 58.08 61.12 63.97

Macro-F1(%)

DeepWalk 38.12 48.22 52.95 55.98

LINE 39.02 46.37 51.70 55.08
node2vec14 39.42 49.21 53.93 57.69

node2vec0.250.25 38.11 47.64 51.93 55.37
uBayes+ 31.07 42.02 45.03 55.33
URGEEJS 55.48 61.45 64.49 67.50

URGEPRWR 49.86 56.41 59.64 62.42

Table 4: Results of classification on DBLP under
different training ratio(%).

by the obfuscating algorithm proposed in [5]10 on determinis-
tic graphs. The authors in [5] studied the problem of injecting
uncertainty (adding suitable edge probabilities) to turn a de-
terministic graph G into an uncertain graph G for the purpose
of identity obfuscation. Individual nodes of the original graph
G can no longer be identified in G, while G preserves some
global properties of G, such as degree distribution, diameter,
and clustering coefficient.

We generate an uncertain graph for each of the following
real-world deterministic graphs with default values of param-
eters: 1) DBLP: a bibliographic co-authorship information
network from DBLP used in [17] that contains 14,376 papers
and 45,583 edges (after obfuscation) classified into 4 classes;
2) Cora [34]11: a research paper citation network which con-
tains 2,708 machine learning papers and 8,365 edges (after
obfuscation) classified into 7 classes.

Here, we consider uBayes+ [8]12 which is a Bayes-based
classification algorithm customized for uncertain graphs.

For the embedding algorithms, after getting the 128 dimen-
sional representations for each nodes, we use one-vs-rest k
nearest neighbor (k-NN) classifiers with k = 5 to predict the
labels of the test samples. We increase the training ratio (TR)
on both datasets from 20% to 80%. For each fixed TR, we
repeat the process 10 times and report the average Micro-F1
and Macro-F1 scores.
Results. Tables 4 and 5 show the results of classification on
DBLP and Cora respectively. Notice that all our solutions
(URGEEJS and URGEPRWR) significantly outperform others in
terms of Micro-F1 and Macro-F1 consistently under different
train ratio. In particular, for the DBLP dataset (Table 4),
URGEEJS achieves the best Micro-F1 improvement on 17.2%
over the best performing baseline (node2vec14) when TR=80%.
For the Cora dataset (Table 5), URGEPRWR can achieve the
best Micro-F1 improvement on 28.7% over the best perform-
ing baseline (node2vec14) when TR=40%.

10http://boldi.di.unimi.it/obfuscation/
11http://linqs.cs.umd.edu/projects/projects/lbc/
12http://www.mi.parisdescartes.fr/∼themisp/collectiveclassification/

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

164

http://www.micans.org/mcl
http://boldi.di.unimi.it/obfuscation/
http://linqs.cs.umd.edu/projects/projects/lbc/
http://www.mi.parisdescartes.fr/~themisp/collectiveclassification/

Metric Algorithm 20% 40% 60% 80%

Micro-F1(%)

DeepWalk 44.93 52.81 56.56 60.09
LINE 33.41 38.92 43.04 47.14
node2vec14 44.50 52.48 56.29 59.62

node2vec0.250.25 44.15 51.60 56.39 60.19
uBayes+ 36.49 44.70 52.46 58.15

URGEEJS 57.22 62.47 64.51 66.00

URGEPRWR 62.87 67.56 69.61 72.03

Macro-F1(%)

DeepWalk 40.05 48.91 53.08 56.72

LINE 27.23 34.31 39.23 43.27
node2vec14 39.56 48.55 52.59 56.04

node2vec0.250.25 39.28 47.88 52.97 56.10
uBayes+ 35.67 45.34 52.84 57.55
URGEEJS 54.07 60.48 61.96 63.25

URGEPRWR 60.38 65.24 67.31 70.18

Table 5: Results of classification on Cora under dif-
ferent training ratio(%).

k

20 40 60 80 100

a
v

g
.

#
p

a
p

e
r

0

0.5

1

1.5

2
URGE

EJS

URGE
PRWR

DeepWalk

LINE

node2vec1

4

node2vec0.25

0.25

MostProbPath

(a) Avg. #paper w.r.t. k

k

20 40 60 80 100

a
v

g
.

#
n

e
ig

h
b

o
r

0

2

4

6

8
URGE

EJS

URGE
PRWR

DeepWalk

LINE

node2vec1

4

node2vec0.25

0.25

MostProbPath

(b) Avg. #neighbor w.r.t. k

Figure 3: Results of k-NN search on DBLP.

6.3 k-NN Search

We also evaluate the performance of our solutions on k-NN
search tasks. Specifically, we conduct experiments on the
DBLP dataset to compare the quality of k nearest authors
in the embedded space. In DBLP, two well-studied metrics
to measure the closeness between authors are: 1) the average
number of co-author papers between authors; 2) the average
number of common neighbors between authors. We evaluate
the quality of k-NN results by measuring their closeness to
the query node using the aforementioned metrics. For each
node with degree larger than 10, we compute the average
closeness between the query node and all its k-NN results by
using the original DBLP dataset as the ground truth. We
study MostProbPath [31] which is a k-NN search method for
uncertain graphs.
Results. By varying k from 1 to 100, Fig. 3a and Fig. 3b
show the results of k-NN search in terms of the average num-
ber of co-author papers and common neighbors respectively.
We observe that our methods (URGEEJS and URGEPRWR) per-
form much better than other competitors, since the nearest
authors found by our methods are closer to the query nodes
in terms of more co-author papers and common neighbors.
Specifically, when k = 1, the average number of co-author
papers (resp. common neighbors) is 1.9 (resp. 7.6) for
URGEEJS, while the corresponding value is 1.54 (resp. 5.8)
for the best baseline (MostProbPath). In addition, URGEEJS

and URGEPRWR achieve similar performance. The reason is
that DBLP is a co-authorship network and low-order, short-
distance relationship already reflects the graph structure
well.

Cora DBLP BlogCatalog

T
im

e
(s

e
c

)

10
0

10
1

10
2

10
3

10
4

10
5

FastEJS

BasicEJS

(a) EJS

Cora DBLP BlogCatalog

T
im

e
(s

e
c

)

10
-1

10
0

10
1

10
2

10
3

10
4

DP_hash

BasicPTM

(b) PTM

Figure 4: Efficiency evaluation.

Proximity Cora DBLP BlogCatalog

SEJS 2.04 14.85 3517.6

SPRWR 10.95 58.1 802.8

Table 6: Running time of computing different prox-
imity matrices (in seconds).

6.4 Efficiency

Finally, we evaluate the efficiency of computing different
kinds of proximity matrices on Cora and DBLP. We also
experiment on a larger dataset, called BlogCatalog [37], which
is a network of social relationships of the bloggers with 10,312
nodes and 665,018 edges (after obfuscation). For SEJS, we
compare our algorithm (FastEJS, Alg. 1) with the basic
solution (BasicEJS) which directly applies the algorithm
proposed in [45]. For SPRWR, we first evaluate the time cost
on computing the PTM and then report the running time
of computing SPRWR. We compare our hash-based dynamic
programming algorithm (DP hash, Alg. 2) with the basic
solution (BasicPTM) proposed in [10].

As shown in Fig. 4, both of our algorithms for EJS and
PTM are significantly faster than the basic ones. For example,
FasterEJS is 6.3 times faster than BasicEJS on DBLP, while
DP hash is 23 times faster than BasicPTM on BlogCatalog.

The execution time of computing different proximity ma-
trices using our proposed algorithms is reported in Table 6.
We can observe that all proximity matrices can be computed
efficiently. In particular, computing S

EJS is faster than S
PRWR

in smaller and sparser datasets (Cora and DBLP), while it is
much slower in the larger and denser graph (BlogCatalog). In
addition, using ASGD to train the model in our experiments
is very efficient. For example it only takes an average of 47.4s
on BlogCatalog.

To summarize, URGE outperforms existing embedding
algorithms (DeepWalk, LINE and node2vec) and uncertain
data mining algorithms (MCL, pKwikCluster, uBayes+ and
MostProbPath), for clustering, classification and k-NN. Our
novel algorithms for computing the proximity matrices are
also faster than existing ones.

7 CONCLUSIONS

In this paper, we examine the problem of uncertain graph
embedding and propose URGE, a proximity preserved embed-
ding method for uncertain graphs. Specifically, we investigate
two kinds of proximities (EJS and PRWR), as well as efficient
algorithms to compute them. Our experiments on both real
and synthetic datasets demonstrate the effectiveness of the

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

165

URGE for various tasks, e.g., clustering, classification and
k-NN search, as well as the efficiency of our algorithms for
the computation of proximity matrices.

ACKNOWLEDGMENTS

Jiafeng Hu, Reynold Cheng, Zhipeng Huang, Yixiang Fang
and Siqiang Luo were supported by the Research Grants
Council of Hong Kong (RGC Projects HKU 17229116 and
17205115) and the University of Hong Kong (Projects 102009508
,104004129, and 201611159247). We would like to thank the
reviewers for their insightful comments.

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja

Josifovski, and Alexander J. Smola. 2013. Distributed Large-scale
Natural Graph Factorization. In WWW. 37–48.

[2] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps
and spectral techniques for embedding and clustering. In NIPS,
Vol. 14. 585–591.

[3] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. 2011.
Node classification in social networks. In Social network data
analytics. Springer, 115–148.

[4] Sanjit Biswas and Robert Morris. 2005. ExOR: opportunistic
multi-hop routing for wireless networks. ACM SIGCOMM Com-
puter Communication Review 35, 4 (2005), 133–144.

[5] Paolo Boldi, Francesco Bonchi, Aristides Gionis, and Tamir Tassa.
2012. Injecting uncertainty in graphs for identity obfuscation.
VLDB 5, 11 (2012), 1376–1387.

[6] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and
Yana Volkovich. 2014. Core decomposition of uncertain graphs.
In KDD. 1316–1325.

[7] Sean R Collins, Patrick Kemmeren, Xue-Chu Zhao, Jack F Green-
blatt, Forrest Spencer, Frank CP Holstege, Jonathan S Weissman,
and Nevan J Krogan. 2007. Toward a comprehensive atlas of the
physical interactome of Saccharomyces cerevisiae. Molecular &
Cellular Proteomics 6, 3 (2007), 439–450.

[8] Michele Dallachiesa, Charu Aggarwal, and Themis Palpanas. 2014.
Node Classification in Uncertain Graphs. In SSDBM. Article 32,
4 pages.

[9] Lee R Dice. 1945. Measures of the amount of ecologic association
between species. Ecology 26, 3 (1945), 297–302.

[10] Lingxia Du, Cuiping Li, Hong Chen, Liwen Tan, and Yinglong
Zhang. 2015. Probabilistic SimRank computation over uncertain
graphs. Information Sciences 295 (2015), 521–535.

[11] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós.
2005. Towards scaling fully personalized pagerank: Algorithms,
lower bounds, and experiments. Internet Mathematics 2, 3 (2005),
333–358.

[12] Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause,
Markus Boesche, Martina Marzioch, Christina Rau, Lars Juhl
Jensen, Sonja Bastuck, Birgit Dümpelfeld, and others. 2006. Pro-
teome survey reveals modularity of the yeast cell machinery.
Nature 440, 7084 (2006), 631–636.

[13] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable
Feature Learning for Networks. In KDD. 855–864.

[14] Wassily Hoeffding. 1963. Probability inequalities for sums of
bounded random variables. Journal of the American statistical
association 58, 301 (1963), 13–30.

[15] Xin Huang, Wei Lu, and Laks V.S. Lakshmanan. 2016. Truss De-
composition of Probabilistic Graphs: Semantics and Algorithms.
In SIGMOD. 77–90.

[16] Paul Jaccard. 1901. Etude comparative de la distribution florale
dans une portion des Alpes et du Jura. Impr. Corbaz.

[17] Ming Ji, Yizhou Sun, Marina Danilevsky, Jiawei Han, and Jing
Gao. 2010. Graph regularized transductive classification on het-
erogeneous information networks. In ECML PKDD. Springer,
570–586.

[18] Ruoming Jin, Lin Liu, and Charu C Aggarwal. 2011. Discovering
highly reliable subgraphs in uncertain graphs. In KDD. 992–1000.

[19] Vasileios Kassiano, Anastasios Gounaris, Apostolos N Papadopou-
los, and Kostas Tsichlas. 2016. Mining Uncertain Graphs: An
Overview. In International Workshop of Algorithmic Aspects of
Cloud Computing. Springer, 87–116.

[20] David Kempe et al. 2003. Maximizing the spread of influence
through a social network. In KDD. 137–146.

[21] George Kollios, Michalis Potamias, and Evimaria Terzi. 2013.
Clustering large probabilistic graphs. TKDE 25, 2 (2013), 325–
336.

[22] Nevan J Krogan, Gerard Cagney, Haiyuan Yu, Gouqing Zhong,
Xinghua Guo, Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira
Datta, Aaron P Tikuisis, and others. 2006. Global landscape of
protein complexes in the yeast Saccharomyces cerevisiae. Nature
440, 7084 (2006), 637–643.

[23] Nan Li, Ziyu Guan, Lijie Ren, Jian Wu, Jiawei Han, and Xifeng
Yan. 2013. giceberg: Towards iceberg analysis in large graphs. In
ICDE. 1021–1032.

[24] Lin Liu, Ruoming Jin, Charu Aggarwal, and Yelong Shen. 2012.
Reliable clustering on uncertain graphs. In ICDM. 459–468.

[25] Hans-Werner Mewes, C Amid, Roland Arnold, Dmitrij Frishman,
Ulrich Güldener, Gertrud Mannhaupt, Martin Münsterkötter,
Philipp Pagel, Normann Strack, Volker Stümpflen, and others.
2004. MIPS: analysis and annotation of proteins from whole
genomes. Nucleic acids research 32, suppl 1 (2004), 41–44.

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. 2013. Distributed representations of words and phrases
and their compositionality. In NIPS. 3111–3119.

[27] A. P. Mukherjee, P. Xu, and S. Tirthapura. 2015. Mining maximal
cliques from an uncertain graph. In ICDE. 243–254.

[28] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu.
2016. Asymmetric Transitivity Preserving Graph Embedding. In
KDD. 1105–1114.

[29] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar
Duygulu. 2004. Automatic multimedia cross-modal correlation
discovery. In KDD. 653–658.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk:
Online learning of social representations. In KDD. 701–710.

[31] Michalis Potamias, Francesco Bonchi, Aristides Gionis, and
George Kollios. 2010. K-nearest neighbors in uncertain graphs.
VLDB 3, 1-2 (2010), 997–1008.

[32] Lior Rokach and Oded Maimon. 2005. Clustering methods. In
Data mining and knowledge discovery handbook. Springer, 321–
352.

[33] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimension-
ality reduction by locally linear embedding. science 290, 5500
(2000), 2323–2326.

[34] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor,
Brian Gallagher, and Tina Eliassi-Rad. 2008. Collective Classifi-
cation in Network Data. AI Magazine 29, 3 (2008), 93–106.

[35] Alan Stuart and Keith Ord. 1998. Kendall’s Advanced Theory
of Statistics. Vol. 1. Wiley. 351–351 pages.

[36] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan,
and Qiaozhu Mei. 2015. Line: Large-scale information network
embedding. In WWW. 1067–1077.

[37] Lei Tang and Huan Liu. 2009. Relational learning via latent
social dimensions. In KDD. 817–826.

[38] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000.
A global geometric framework for nonlinear dimensionality reduc-
tion. science 290, 5500 (2000), 2319–2323.

[39] Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, and Maosong Sun.
2016. Max-Margin DeepWalk: Discriminative Learning of Net-
work Representation. In IJCAI. 3889–3895.

[40] Stijn Van Dongen. 2008. Graph clustering via a discrete un-
coupling process. SIAM J. Matrix Anal. Appl. 30, 1 (2008),
121–141.

[41] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep
Network Embedding. In KDD. 1225–1234.

[42] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Ed-
ward Y. Chang. 2015. Network Representation Learning with
Rich Text Information. In IJCAI. 2111–2117.

[43] R. Zhu, Z. Zou, and J. Li. 2016. SimRank computation on
uncertain graphs. In ICDE. 565–576.

[44] Zhaonian Zou, Hong Gao, and Jianzhong Li. 2010. Discover-
ing frequent subgraphs over uncertain graph databases under
probabilistic semantics. In KDD. 633–642.

[45] Zhaonian Zou and Jianzhong Li. 2013. Structural-context simi-
larities for uncertain graphs. In ICDM. 1325–1330.

[46] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010.
Mining frequent subgraph patterns from uncertain graph data.
TKDE 22, 9 (2010), 1203–1218.

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

166

	Abstract
	1 Introduction
	2 Related Work
	2.1 Uncertain Graphs
	2.2 Graph Embedding

	3 Uncertain Graph Embedding
	3.1 The URGE Model

	4 Proximity Matrix for Uncertain Graphs
	4.1 Expected Jaccard Similarity
	4.2 Probabilistic Random Walk with Restart

	5 Optimizing the Training Process
	6 Experimental Results
	6.1 Clustering
	6.2 Classification
	6.3 k-NN Search
	6.4 Efficiency

	7 Conclusions
	References

