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Abstract—We propose a novel two-step mining and optimiza-
tion framework for inferring the root cause of anomalies that
appear in road traffic data. We model road traffic as a time-
dependent flow on a network formed by partitioning a city into
regions bounded by major roads. In the first step we identify
link anomalies based on their deviation from their historical
traffic profile. However, link anomalies on their own shed very
little light on what caused them to be anomalous. In the second
step we take a generative approach by modeling the flow in a
network in terms of the origin-destination (OD) matrix which
physically relates the latent flow between origin and destination
and the observable flow on the links. The key insight is that
instead of using all of link traffic as the observable vector
we only use the link anomaly vector. By solving an L1 inverse
problem we infer the routes (the origin-destination pairs) which
gave rise to the link anomalies. Experiments on a very large
GPS data set consisting on nearly eight hundred million data
points demonstrate that we can discover routes which can
clearly explain the appearance of link anomalies. The use of
optimization techniques to explain observable anomalies in a
generative fashion is, to the best of our knowledge, entirely
novel.

I. INTRODUCTION

The flow of traffic on a road network is a complex

phenomenon. A small event can cause a dramatic change in

the flow and can propagate in an uneven manner throughout

the system. The challenge from a data mining perspective

is that a historical archive of traffic flow usually does not

explicitly contain a description of events which may have

caused perturbations in the system. While existing data

mining techniques (especially anomaly detection ) can be

applied to mine for deviations, there is no known systematic

way to piece together the mined anomalies to infer events

which may have caused the anomalies to occur.

To give a concrete example, consider the setting shown

in Figure 1 about Beijing’s road network. Our objective

was to find interesting patterns from GPS data obtained

from Beijing’s taxi cabs. We first applied PCA to search

for anomalous links connecting two regions, based on their

historical pattern. An example of a discovered anomaly is

shown as a red (bold) arrow. On its own it is difficult to

explain why the discovered anomaly would be interesting.
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Figure 1. Bold (red) links were discovered using Principal Component
Analysis (PCA) techniques for anomaly detection. Relationship between
links and routes was captured using the link-route matrix. Routes were
inferred using L1 optimization techniques. It became easier to explain
the route anomaly because of the re-routing of traffic due to the Beijing
marathon. This overall increases the precision of the discovery process.

However, in the next step we combined links with routes

using a link-route matrix and then used L1 optimization

techniques to infer routes which may have caused the

anomalous links to appear. This is shown as a green (dashed)

path. The discovery of the anomalous route helps put the

data mining exercise in perspective and explain the anomaly.

As it turned out, on April 17th, 2011, traffic in Beijing had

been diverted away from Tiananmen Square because of the

Beijing marathon. Thus the normal traffic route (shown as

dotted path) from region r1 to the Beijing South Railway

Station was diverted and the dashed (green) path witnessed

excess traffic. The automatic discovery of anomalous routes

caused by diversion in traffic can now be used for future

planning by the city road authority. The relationship between

the anomalous links and the routes (which may have caused

them), helps increase the precision of the discovery process.

We will give several more real examples in the Experiment

and Evaluation section.

We make the following contributions:

1) We propose a novel two-step mining and optimization

framework to infer events which may have caused

anomalous behaviour to appear in road traffic flow.
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2) We model and study the traffic between regions rather

than on road surfaces. This not only reduces the com-

plexity of the model but also helps with the detection

of the root cause of traffic anomalies.

3) We validate our framework using a large GPS trace

consisting of nearly eight hundred million data points.

Using our approach we were able to infer real events

which caused perturbations in the traffic flow. Infor-

mation about these events was not part of the original

data set.

The rest of the paper is organized as follows. In Section

2 we define the problem and set up the notation. In Section

2 we explain our methodology which combines the use

of anomaly detection with optimization techniques. The

experimental setup and evaluation is described in Section

4. We overview related work in Section 5. We conclude in

Section 6 with a summary and directions for future work.

II. TRAFFIC MODELING

We model a road network as a directed graph N =
(V,L)) where V is the set of regions bounded by major

roads and L is the set of directed links that connect two

regions. For now we will assume that both V and L are

fixed but later we will see that the set L can change as a

function of time.

As demonstrated in Figure 2(A), the region map of Beijing

is partitioned by major roads. Each region is modeled as a

node of a graph [16]. To define the links we first observe

the flow of taxis and based on parameters (defined later),

connect two regions with a link if sufficient taxi flow

exists between the two regions for a given time window.

Example flows are shown in (B). Based on the flows we

define routes or paths between regions. For example in

(C), paths which end in region r4 are shown. The abstract

graph which captures regions and links between them is

shown in (D). The decision to model regions (rather than

say traffic intersections) was based on two considerations.

The first is that regions (bounded by major roads) have a

semantic coherence. For example a region could represent

a business zone, shopping district, a cluster of a higher

education entities or residential locations. Each of these

semantic zones have their unique mobility patterns. For

example, if a link connecting a residential area to a shopping

district shows abnormally high traffic compared to usual

then that is an indicator that the anomaly is probably due

to a holiday. We have found several such anomalies and

they will be reported in the Experiment section. The second

reason for modeling regions is efficiency and handling data

inaccuracies. The region graph is substantially smaller and

furthermore the inaccuracies of GPS sensors can be averaged

out when we deal with larger regions. More details about

the segmentation algorithm to form regions and inferring

the semantic function of regions can be found in [16].

Term Notation Descrption

Link-Route Matrix AAA {0− 1} binary matrix

Link Time Matrix LLL Real-valued matrix

The link anomaly vector bbb {0, 1} vector

PCA eigenvalues λi’s non-zero

PCA eigenvector vivivi’s real-valued

L1 norm ‖xxx‖1 |x1|+ . . . |xn|
L0 norm ‖xxx‖0 non-zero |xi|’s
L2 norm ‖xxx‖2 |x1|2 + . . . |xn|2
The route vector xxx {0, 1} valued from Ax = bAx = bAx = b.
Path element pipipi a path connects o-d pair

Table I
IMPORTANT NOTATION THAT WILL BE USED IN THE PAPER

We capture the relationship between links and the routes

(paths) as a link-route binary matrix A. The entries of the

link-route matrix are given by

Aij =

{
1 if link i is on route j

0 otherwise

An example link-route matrix is shown in (E). The

distinguishing feature of the link-route matrix is that the

number of possible routes (n) is typically much greater than
the number of links (m). The traffic flow on a particular link

is a function of all the traffic that flows on routes that contain

that link. Thus if we associate a link flow vector b which

contains flow information of the traffic of links and x as the

flow vector of routes then under equilibrium conditions we

can model the relationship between the route flow vector x
and the link flow vector b as

Ax = b (1)

Using GPS technology we can monitor the flow of traffic

on links in a given time period. For example, the following

is an example of a link traffic matrix L across five time

periods:
t1 t2 t3 t4 t5

l1 10 20 10 20 10
l2 5 5 5 5 5
l3 20 10 50 70 80
l4 10 50 60 20 10
l5 12 20 30 40 50

The link matrix L and the adjacency matrix A will play a

crucial role in subsequent analysis. In our proposed two step

mining and optimization approach, we will first apply PCA

to mine for link anomalies from L. We will then apply L1

optimization techniques on Ax = b to infer possible routes

that may have caused the link anomalies. Table I lists the

important notation that is used throughout the paper.

III. METHODOLOGY

In this section we describe in detail the components of

our methodology to infer routes which may have caused the
link anomalies. In Section III-A we will describe the use of

Principal Component Analysis (PCA) to detect anomalies
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Figure 2. An example using traffic networks in the city of Beijing. Based on major roads in the traffic network, the entire city (subfigure (a)) is partitioned
into regions (subfigure (b)). Trajectories of moving objects (such as a moving taxi shown by a blue trajectory in subfigure (c)) connect neighboring regions,
based on which we create the notion of links (subfigure (d)).

from the link traffic matrix L. In Section III-B1 we will

explain the rationale behind the use of L1 minimization to

infer information about routes why may have caused link

anomalies.

A. PCA for Anomaly Detection

In this section we describe the use for Principal Compo-

nent Analysis (PCA) for anomaly detection.

PCA is a widely used dimensionality reduction and

lossy compression technique in Data Mining [15], [10].

PCA exploits the observation that in most explicitly high-

dimensional data sets, there is a high implicit correlation be-

tween many dimensions (variables) which can be inferred by

carrying out an eigen-decomposition of the data covariance

matrix. Before we explain the method is detail we provide

the high level idea behind the use of PCA.

PCA selects a new data-dependent basis for the data.

These basis are called the principal components. The first

basis element is in the direction of maximum variance, the

second in the direction of second highest variance and so

on. The principal components are the eigenvectors of the

covariance matrix of the data which is always symmetric

and semi-positive definite. It has been observed that for

most real data sets much of the variance will reside along a

small percentage of higher principal components (i.e., those

corresponding to higher eigenvalues). Thus by projecting the

data into the first few principal components, most of the

variance in the data can be preserved while simultaneously

reducing the dimensionality.

Now the basic intuition behind the use of PCA for

anomaly detection is that for a normal data point most of its

norm is concentrated in the subspace spanned by the higher

principal components. Contrapositively, if for a data point
most of its norm is concentrated in the subspace spanned
by the lower principal components then it is a candidate
anomaly!
Deciding the split which separates the higher eigenvalues

from the lower eigenvalues is often data dependent and is

one of the weaknesses of the PCA method. A conventional

approach is to use the eigenvectors of the top-k eigenvalues

for the normal subspace, where top-k captures around 95%

of the variance in the sample data.

The advantage of PCA is that both spatial and temporal

correlation can be captured by specifying the covariance

matrix structure appropriately. The disadvantage of PCA is

that separating the “normal” subspace from the “abnormal”

subspace is often arbitrary and the results are sensitive to

the choice made.

Consider the L matrix which consists of the evolutions of

link traffic over time. Here the rows are the links and the

columns are the time bins. The following steps need to be

carried out to determine candidate anomalies.

1) Let L̃ = L− μ, where μ is the column sample mean

matrix.

2) Form the matrix C = L̃T L̃. C is an t×t matrix where
t is the number of time intervals being used. For ex-

ample we could restrict the time to a few hours or the

full day depending upon the granularity of the analysis

required. Note that our choice of C is determined by

the fact that we will be searching for link anomalies

rather than time intervals which are anomalous (as is

the case in the networking community).

3) Compute the eigendecomposition of C, i.e., all

eigenvalue-eigenvector pairs (λi, vi), such that

Cvi = λivi

4) Order the pairs (λi, vi) in decreasing order of eigen-

values

λ1 ≥ λ2 ≥ . . . , λk, λk+1 = λk+2 = . . . λt = 0

5) Let Pn be the subspace [v1, . . . , vr] of R
t spanned by

the first r eigenvectors. Similarly Pa be the subspace
spanned by [vr+1, . . . , vt].

6) Project all data points onto Pa. Thus if x is a original

data point then denote by xa its projection in Pa
7) Define a threshold θ and select all links for which

‖x− xa‖ > θ as candidate anomalies.

Thus there are two important parameters which can have a

strong bearing on the selection of candidate anomalies. The

first is the choice of eigenvalue λr which will determine the
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formation of the normal and abnormal subspace Pn and Pa.
The second parameter is the choice of θ to select candidate

anomalies.
1) Choice of Covariance Matrix: The choice of the

covariance matrix has an important bearing on the type of

correlations that are being captured by PCA. For example,

for the link matrix L, LLT captures the spatial correlation

between the links, while LTL will capture the temporal

correlation. We can also capture spatio-temporal correlation

by using the Karhune-Lowe transform. An interesting dis-

cussion on how the choice of the covariance matrix can

effect the subsequent analysis and interpretation can be

found in [2].
2) Example of PCA Anomaly Detection: We present a

small example to illustrate the use of PCA for anomaly

detection. Consider the 5× 5 link matrix shown in Section

2. For observation it is clear that l4 exhibits anomalous

behaviour as the traffic counts in time steps four and five

suddenly drops compared to its past counts and also vis-vis

the behaviour of other links.
To carry out a PCA analysis we first normalize the L

matrix and form the 5 × 5 LTL covariance matrix. An

eigendecomposition of the covariance matrix show that the

eigenvalues in decreasing order are

[1.9× 103, 0.67× 103, 0.02× 103, 0.01× 103, 0]
We choose the first eigenvector as the normal subspace

Pn and the remaining eigenvectors as the abnormal subspace
Pa. All the points are projected onto Pa and in this space

for all points we compute the square of the deviation from

the mean. These are

[0.4× 103, 0.06× 103, 0.5× 103,1.47× 1031.47× 1031.47× 103, 0.49× 103]
Thus the technique correctly identifies link 4 as the anomaly.

B. Inferring Routes from Anomalous Links
Have discovered the anomalous links using PCA as de-

scribed in the previous section, we now describe how we

can infer routes whose flow traffic may have caused the

anomalies.
The problem of inferencing origin-destination pairs and

routes from link traffic data has been intensively studied

both in the transportation and the networking (Internet)

community. In transportation research this problem is some-

times known as the observability problem and in networking

research it has often referred to as the network tomography

problem [5], [17]. There are two characteristics of this

problem that we highlight.

1) In equilibrium, the relationship between traffic flowing

on a route and links on the route is given by a simple

linear relationship

Ax = bAx = bAx = b

Here A is the {0, 1} link-route adjacency matrix, x
is the route vector of traffic flows and b is the vector

of flows on the links. To reiterate, this is an idealized
relationship which is hypothetically assumed to hold

in equilibrium. In practice there is time-dependency

between the origin-destination and link flows.

2) The system of equation Ax = bAx = bAx = b is under-constrained.
This is because the number of possible routes is

substantially greater than the number of links. This

implies that by itself there are infinitely many solutions

to the system of equations.

1) L0 and L1 Solutions: The problem that an under-

constrained system will result in infinitely many solutions

can be addressed by specifying the type of the solution that

is required by the application. For example, we can require

the returned solution to have small component values or be

sparse. We note that much of the recent interest in sparse

solution for systems of equations and compressed sensing

address exactly the issue that we will highlight [4].

A natural way to enforce sparsity is to use the L0 norm

which is defined as

‖x‖0 = |{xi|xi �= 0}|

One of the surprising results that has received prominent

attention lately is that if the L0 norm is replaced with the

convex L1 norm, ‖x‖1 =
∑
i |xi|, then the solution returned

can still be sparse.

To get an insight on why the L1 and L0 solution may

coincide we consider the simple case of the system

min ‖x‖0 s.t.a1x1 + a2x2 = b1

We can convert the L1 relaxation of the above equation

into a Linear Programming(LP) formulation. For ease of

exposition assume all components of the problem are non-

negative. By introducing an additional variable t the above
minimization problem can be expressed as

min t (2)

a1x1 + a2x2 = b1 (3)

x1 + x2 = t (4)

The LP is depicted in Figure 3. Now, since we are

minimizing t and want to satisfy the constraint at the same

time, the hyperplane x1 + x2 = t moves towards the fixed
constraint and stops the moment the constraint is satisfied.

Thus if a1 > a2, the moving hyperplane will touch the

constraint at the point (0, b1/a1) which is exactly one of the
lL0 solutions. Furthermore notice that for the L1 solution to

be sparse, the two constraints could not have been parallel

(or linearly dependent). In fact this turns out to be a crucial

condition to guarantee the sparseness of the L1 solution [3]
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l0 and l1 solution coincide
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(0, b1/a1)

Figure 3. Explanation of when the L1 and L0 solution coincide. If the L1

problem is formulated as an LP then the hyperplane x1 + x2 = t moves
the least possible amount until it first touches the hyperplane constraint.

2) Discussion on L1 solution: As we will demonstrate

in the Experiment section, the L1 solution plays a key role

in selecting routes which may have caused the emergence

of anomalous links. The space of routes has a much greater

cardinality than the space of links. However, the L1 solution,

by being sparse, prevents the number of possible candidates

from exploding. Yet at the same time, information about

routes is much easier to interpret.

3) Example: L1 solution: Example: Using the link-path

matrix A given in Figure 2, and suppose link l2 and link l4
are anomalies. Then b = [0, 1, 0, 1, 0]T is the link anomaly

vector. The dimensionality of A is a 5× 6. The matrix A is

A =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0 0
1 1 1 0 0 1
0 0 1 0 1 0
0 1 1 0 0 0
0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎠

The number of possible routes is six and denote the unknown

vector of routes by x. We apply the well known Matlab con-

vex solver cvx[8] to obtain a solution of the L1 constrained

optimization problem and receive

x = (0, 1, 0, 0, 0, 0)

This solution is semantically meaningful as it indicates

that the following path have a bearing on the link anomalies

p2 : r2 → r3 → r4

Now if we solve for the l2 solution we receive

x = (0, 0.75, 0.25, 0.25,−0.25, 0.0)
This makes it very hard to interpret which routes are related

to the link anomalies.

IV. EXPERIMENT AND EVALUATION

In this section, we evaluate both efficiency and effective-

ness of our methods using real-world trajectories obtained

from GPS-equipped taxicabs in Beijing. These cabs can be

regarded as mobile sensors constantly probing the traffic

flow on road surfaces. Our approach is implemented on a

64-bit server running Windows Server 2008 (OS) with a

2.66GHZ CPU and a 16G memory.

A. Setting

Taxi Trajectories: We use GPS trajectories generated by

13,597 taxis over a period of 3 months (March, May, and

August in 2011). The total distance of the dataset is over

400 million kilometers and the total number of GPS point

is almost 790 million. The average sampling interval of the

dataset is 70.4 seconds. From the taxi trajectories we identify

effective trips (the taxicab was carrying a passenger)from the

an embedded weight sensor. As a result, 8,202,012 trips have

been detected, which is over 15 percent of traffic on road

surface (according to the report of Beijing Transportation

Bureau).

Road Network: The road network of Beijing consists of

121,771 road nodes and 162,246 edges. Using the major

roads (there is a road level associated with each edge)

from the network, Beijing has been partitioned into 580

regions. As illustrated in Figure 4 we define 15 minutes

as a time interval and study the performance of our method

changing over the size of the sliding window w. That is,
we carry out our method every 15 minutes using the taxi

trajectories received in the past w hours. The length of a

time interval is a trade-off between the computational load

and the timeliness of an application. On the one hand, setting

a long time interval reduces the times of anomaly detection

but will lead to a slow notification once an anomaly occurs.

On the other hand, a too short time interval (like 5 minutes)

will waste unnecessary computing resources as the traffic

flow will not change too much in a short period. We study

the performance of our method changing over window size

w.

Time
Sliding window

w hours
15 minutes

A time interval

Figure 4. The sliding window and matrix update time

In each implementation, we map the taxi trajectories

received in the latest time interval onto the road network,

updating the link-route matrix. For example, Figure 6 shows

the number of trajectories, paths, OD pairs, and links

(original as well as after being filtered) of a weekday

(5/18/2011) and weekend (4/17/2011), using 2 hours as the

windows size. In this case, we filter some links traversed

by less than 5 trajectories in every time interval of the

past two hours. These links may have been caused by

noisy trajectories or due to the imperfectness of the map-

matching function. Additionally, in practice, we only need

to capture the significant anomalies instead of all. In the later
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experiments, we found that the performance of our method

is not compromised by using the small set of links. Further,

Figure 5 plots the trajectory data (the lighter the denser) and

link graph generated in 5/18/2011 on Beijing map.

Figure 5. Trajectory data and link distributions on maps
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Figure 6. Traffic and links changing over time of day

B. Efficiency

Table II shows the efficiency of our framework, using the

average time cost of each component. For PCA we used the

standard inbuilt algorithm in Matlab and for L1 we used

the cvx package [8]. We also implemented a greedy version

of L1 similar in spirit to the Basis Pursuit algorithm [6].

The building of matrices like A and L was programmed in

C#. Note that once these matrices have been built for the

first time, we can update them very quickly in the streaming

scenario. Clearly, our method can be carried out very effi-

ciently for online applications. In short, in most instances

our framework can detect anomalies within 10 seconds. In

addition, extending the window size only leads to a slight

increase to the computing time. Given a sliding window

of 8 hours, we can still find anomalies within 15 seconds.

These results demonstrate the efficiency and scalability of

our method. The efficiency can be further enhanced using

some updating strategies proposed in streaming databases.

We studied three algorithms, consisting of cvx-L1, cvx-

L2, and the L1-greedy, that can be selected in the second step

of our framework. As shown in Figure 7 A), l2 algorithm

has the best efficiency according to the mean running time.

W Building matrices PCA L1-cvx Total
(h) First time(s) Update(s) (s) (s) (s)

1 16 1.8 0.03 0.75 2.58
2 20 2.4 0.04 1.37 3.80
3 42 2.8 0.04 2.05 4.89
4 55 3.2 0.07 2.81 6.07
5 63 4.1 0.07 3.57 7.44
6 65 4.1 0.08 4.43 8.61
7 74 4.5 0.08 5.39 10.01
8 82 4.9 0.08 6.44 11.48

Table II
THE BUILD, UPDATE AND RUNNING TIME OF MATRICES, PCA AND L1

OPTIMIZATION RESPECTIVELY

However, we found that l2 will result in many non-zero

entries in the vector x (refer to Table 2). That is finding

many routes contributing to an anomalous link, thereby

making it harder to interpret the results. As demonstrated

in Figure 7 B), the L1-greedy algorithm is faster than cvx-

L1 when the size of the sliding window is small. As the

window size increases, cvx-L1 demonstrates its advantages

over the L1-greedy algorithm. So, we can choose different

L1 implementation when using different window sizes.
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Figure 7. Efficiency of L1 implementation

Figure 8 shows the distribution of the distance of the

links to the mean value in the anomalous space (after being

transformed by PCA). No matter what size of a window and

what time of day with which we studied the distribution,

90% of the links have a distance smaller than one times

the standard deviation to the mean value and 98% had a

distance less than three standard deviations. Based on this

analysis, links whose distance to the mean was greater than

three standard deviations were labeled as anomalous.

C. Effectiveness

We evaluated the effectiveness our solution using both

real case studies and semi-synthetic experiments. Table III

presents the average number of detected anomalous links and

number of paths contributing to these links using different

window size. Generally, a larger sliding window leads to

more anomalous links and paths (the paths only traversed

by one taxi trajectory have been filtered). Unlike the L2
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Figure 8. Distribution of deviations in the anomalous subspace

algorithm that returns hundreds of paths, cvx-L1 offers a

reasonable number of paths when analyzing the root cause

of the detected anomalous links.

W Ave. num of Ave. number of non-zero entries of x

(h) anomalous links L1-cvx L1-greedy L2

1 4 10 4 40
2 5 23 14 88
3 9 30 31 192
4 10 31 48 250
5 13 58 88 410
6 14 63 107 524
7 16 97 114 650
8 17 91 100 693

Table III
NUMBER OF DETECTED ANOMALOUS LINKS AND PATHS. IT IS CLEAR

THAT THE L1 SOLUTION IS SUBSTANTIALLY MORE SPARSER THAN L2 .
FURTHEMORE, EVEN THOUGH MORE ROUTES THAN LINKS ARE

RETURNED, ROUTE ANOMALIES ARE EASIER TO EXPLAIN.

1) Real Case Studies: We further evaluated the detected

anomalies based on real-world events reported by Beijing

Transportation Bureau (as it is difficult to obtain all the

ground truth for the detected results). Figure 9 highlights

some events that occurred on a workday and non-workday

respectively, using a 2-hour window size and 15-minute time

interval. Figure 9(I) A) depicts some anomalies we detected

on (9am-11am) 4/2/2011 which should be a weekend but

was rescheduled to be a workday due to the upcoming Tomb-

Sweeping Festival (4/3-4/5). This is also the first weekend

after the opening of Sakura Festival held in Yuyuantan Park

which is located in region r3. Though most people went

to work, a large amount of traffic was still been generated

by people who traveled (especially from r1, r2, and r4) to
r3 to participate in the Sakura festival. As a result, three

anomalous links (L1, L2, and L3) were detected. Note that
our framework does not only identify anomalies but also

find out the root cause traffic leading to the anomalies. For

example, 21.4% of the traffic passing L2 was from r1 and

14.3% was from r2. At the same time, 61% of the traffic

causing L3 originated in r3. We further present the traffic

volume on L1 and L2 in Figure 9(I)B) and C) where we can
see the sudden changes (marked with red circle) of traffic on

these two links from 9am to 11am. Knowing that regions r1,

r2, and r4 are regions of historic interests (containing many
tourist attractions), we obtained the whole picture about

these events. That is, these anomalies could be generated

by tourists who want to attend the Sakura Festival.

As presented in Figure 9(II), a traffic control was enforced

in the red area for a Marathon race starting from Tiananmen

Square, leading to the blockage of the fastest routes between

region r1 and r3, r2 and r3, r1 and r5. An anomaly occurred
on link L1 due to the decrease of traffic flows as shown in

Figure 9(II)-B). In other words, people from r1, r2, and
r6 have to take a detour to reach region r3, r4, and r5.
For example, there were four taxis traveling from r1 to r5
in a 15-minute time interval before the traffic control (that

occurred at 9:30). However, the volume of traffic decreased

to zero after the traffic control. Similar changes happened

on other paths. This example shows that our framework can

detect anomalies caused by sudden increase or decrease of

traffic. This example also demonstrates the ability of our

framework in revealing the possible underlying cause of a

phenomena. In this particular instance, the problem does not

lie in the region even though the anomaly occurred there.

Without the identification of the routes contributing to the

anomaly it would have been very difficult to conclude that

the major problem was in the traffic control areas (marked

red).

2) Semi-Synthetic Experiments: To scale up the real case
study mentioned above, we have also carried out semi-

synthetic experiments based on real data to test the precision

and recall of our method. Specifically, we still formulate

a link graph (like Figure 5 right) and a corresponding

link-route matrix A based on the real taxi trajectory data

received in a time window. We then manually eliminate

some normal links from the graph, e.g., L5, as illustrated
in Figure 10 and distribute the traffic on L5 to another

path, for instance, the shortest path connecting r3 and r6
(assuming r3 → r4 → r6). Accordingly, the original paths
P1 and P2 will be modified to P1′ and P2′. To achieve

this, we first perform the first step of the proposed anomaly

detection method on the data. The detected anomalous links

will not be picked out for the semi-synthetic evaluation. In

the meantime, we properly select a normal link to be cut

(like L5), making sure the traffic volume on the link is big

enough to deviate the traffic on the alternative path (e.g.,

r3→ r4→ r6) from normal status. We first check whether

the link L3 and L4 as well as the removed link L5 can be

detected as an anomaly. Secondly, we test if our method can

find the root cause contributing to the anomaly of L3 and

L4, i.e., P1′ and P2′. We study the precision and recall

of each step as a function of the volume of traffic (i.e.,

number of taxis traveling) on the link we removed. Figure

11 A) and B) respectively shows the precision and recall of

our method in detecting anomalous links (i.e., the first step

using PCA). The horizontal axis denotes the traffic volume

on the link we cut. We randomly chose 200 time slots from
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Figure 9. (I) The traffic changes due to the Sakura festival is an example of anomaly caused by an increase in traffic. (II) The Beijing marathon results
in an anomaly due to a reduction in traffic.
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Figure 10. The semi-synthetic setup to evaluate the precision and recall
of our method.

the data (including workdays and holidays) and select three

links of each volume in each slot to test (as demonstrated in

Figure 10). That is, we performed 3*200=600 tests for each

volume of link. Later, we calculate the average precision and

recall for each volume. Generally, our method becomes more

capable of detecting anomalous links when the eliminated

link has a larger traffic volume. Meanwhile, a relatively

large window size (e.g., w=2hours) makes our method more
accurate than using a smaller one (e.g., w=1hour). However,
further increasing the window size (e.g., w=4hours) does not
help any more. This is in line with our intuition that observ-

ing during a longer time window is more likely to identify

anomalies accurately; however, a very long observing time

window is not necessary and would bring noise into the

inference.
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Figure 11. Effectiveness of step 1 (time bin=15min)

Figure 12 A) and B) show the effectiveness of inferring

the root cause of the detected anomalous links (i.e., the sec-

ond step). As a result, CVX-L1 method outperforms CVX-

L2 in both precision and recall, demonstrating its advantages

over the latter. Furthemore, CVX-L1 has a relatively stable

performance and is is not too sensitive to the changes in

traffic volume on a link.

V. RELATED WORK

We review four strands of research which are relevant to

this paper. These are (i) mathematical modeling of general

traffic networks , (ii) transportation systems analysis, (iii)

network anomaly detection techniques and (iv) analysis of

GPS data. The first three strands have a rich history and we
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Figure 12. Effectiveness of step 2 (time bin=15min, W=2hours)

will only be able to highlight the salient features relevant to

this paper.

A. Mathematical Modeling of Traffic Networks

We review the mathematical modeling aspects of traffic

networks from [9]. As noted before the basic primitive is

the link-route matrix A as shown in Figure 2(E), along with

the link flow and route flow vectors b and x respectively.

The flow on each link yi is given by

bi =
∑
j

Aijxj

Another important primitive (in mathematical modeling )

is the origin-destination pair and route matrix, H which is

also an {0, 1} incidence matrix. Here , H(s, r) captures the
information that route r links the origin-destination pair s.
In our work we do not explicitly model H as we are able to

infer this information from route flows. The congestion on

each link bi is captured by the delay function Di(bi). The
delay function can be calibrated for each link but is generally

an increasing function of bi. Now the time to travel along

each route j is given by the expression∑
i

Di(bi)Aij

Suppose there are two routes, r and r′ that can be used to
serve an origin destination pair s. The rational for a driver to
choose the route r such that compared to every other route

r′ ∑
i

Di(bi)Air ≤
∑
i

Di(bi)Air′

In a remarkable result due to Beckmann et. al. [1], it was

shown that the local strategy of Wardrop equilibrium is the

optimal solution of the global optimization problem

minimize
∑
i

∫ bi
0

Di(u)du

subject to Hx = s,Ax = b

and x, b ≥ 0
Much of the mathematical research in traffic networks

(both transportation and internetworking) is concerned with

the analysis of how local optimal choices can be captured

by a global optimization problem. For example, a similar

characterization has been obtained for the TCP protocol for

data traffic. Mathematical modeling of traffic is essentially

a “forward” exercise. The role of data is to calibrate the

model (e.g., the delay function). In data mining, we are more

interested in the “inverse” problem: how can we use data to

infer information about events which are causing traffic to

deviate from equilibrium.

B. Network Anomaly Detection

Our framework is closest to a body of work in the

networking community. The starting point is the paper by

Lakhina et. al. [11], which introduced the use PCA for

detecting network anomalies like denial of service attacks,

flash crowds, ping flood etc. PCA was used to exploit spatial

and temporal correlation between link traffic. Anomalies

were discovered by identifying time buckets which were

mostly resided in the subspace spanned by the low eigen-

vectors (i.e., eigenvectors corresponding to low eigenvalues)

of the covariance matrix of LLT where L is the link-time

matrix. These time buckets were labeled as anomalous. In

our case we look for link anomalies and thus we work in

the eigenspace of the matrix LTL. In a subsequent paper,

Zhang et. al. [17] combined network anomaly detection with

optimization (including L1 optimization) to identify source-

destination which caused the anomalous time bins. However

in both these and other papers in network anomaly detection,

the objective is to identify network anomalies and also their

potential origin-destination pairs. In our case, we begin with

almost no information about the events or even the type of

events that are causing traffic perturbations.

C. Transportation and Traffic Analysis

In the transportation systems literature, the problem of

relating link traffic to source-destination pairs is called the

observability problem. The standard text in this area is

Transportation Systems by Cascetta [5]. In this community

the source of data is still primarily sensors which are

embedded in roads and measure volume and occupancy rates

of each link. To the best of our knowledge the use of L1

optimization for inference of sparse route vectors has not

been used in the community.

There is some recent work [7], [13] that detects traffic

jams on road surfaces using GPS traces of vehicles. Our

framework is different from these techniques in two parts.

First, the traffic anomalies we detect are far beyond traffic

congestions, e.g., it could be a sudden decrease caused by

a traffic control. Sometime, an anomaly occurs even if a

road is not congested. Second, we study the traffic between

regions instead of on road surfaces. By this means, we can

not only reduce the complexity of modeling city-wide traffic

but also are to detect the root-cause of traffic anomalies.
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Finally we would like to report some recent work in this

area which uses a similar data set. Zheng et. al. [18] have

used the data set to investigate the connectivity flaws in the

road network. Liu et. al. [12] have used frequent subgraph

mining to discover anomalous links for each time interval

and then connect the anomalies across time intervals to form

outlier trees. In this paper we also look for anomalies but the

key difference is the use of L1 machinery to elicit the cause

of anomalies discovered. Similary [14] et. al. have proposed

the use of likelihood ratio tests to determine regions where

the traffic volume has deviated substantially from the norm.

Again, this work is algorithmic and does to attempt to

explain the cause of anomalies. Finally we would like to

note that our work contributes towards the growing body of

literature on Urban Computing [19].

VI. SUMMARY AND CONCLUSION

In this paper we have proposed a framework to analyze a

large GPS data set obtained from over thirty thousand taxis

in Beijing over a three month period. Our framework has

two steps: mining and optimization. In the mining step we

have used Principal Component Analysis (PCA) to discover

link anomalies from GPS data. From the link anomalies

it is difficult to infer about what caused the anomalies to

occur. In order to gain further insights we used the link-route

incidence matrix to formulate an L1 optimization problem.

The sparse solution of the optimization problem gives a

candidate set of routes which can be used to explain why

anomalies occur. We give several real examples of such

anomalies.
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